Math, asked by 182014118, 7 months ago

find the function whose first difference is 9x^2+11x+5​

Answers

Answered by aburaihana123
0

Answer:

The function of first difference is f(x) = 3x^{2}  + x^{2}  +x + C

Step-by-step explanation:

Given: The given function f(x) =9x^{2}  + 11x +5

To find: The first difference of the given function

Solution

Let f(x) be the required function then ∆f(x) = 9x^{2}  + 11x +5

Now we have to change ∆f(x) in factorial notation.

f(x) = 9x^{2}  + 11x +5 = Ax^{2}  + Bx^{1}  + C

    = Ax(x-1) + Bx +C

Putting  x = 0 then we get

C = 5

If we sub x = 1 then we get,

9x^{2}  + 11x +5  = B +C

25 = B +C

25 - 20 =B

B = 20

On comparing  we get the value of A = 9

∆f(x) = 9x^{2}  + 11x^{1}  +5

Integrating we get

f(x) = \frac{9x^{3} }{3}  + \frac{20x^{2} }{2}  + 5x +C_{1}

Where C_{1} is the constant of integration.

f(x) = \frac{9x^{3} }{3}  + \frac{20x^{2} }{2}  + 5x +C_{1}

    = 3x(x-1) (x-2) + 10x (x-1) + 5x + C_{1}

f(x) = 3x^{2}  + x^{2}  +x + C

Final answer:

The function of first difference is f(x) = 3x^{2}  + x^{2}  +x + C

#SPJ2

Answered by swethassynergy
0

Answer:

The function whose first difference is 9x^2+11x+5 is f(x) = 3x^{3}  + x2 + x + C.

Step-by-step explanation:

Given:

First difference is 9x^2+11x+5.

To Find:

The function whose first difference is 9x^2+11x+5.

Solution:

Let f(x) be the required function then \delta f(x) = 9x2 + 11x + 5.

First, we change \delta f(x) in factorial notation.

Let \delta f(x)  = 9x^{2}  + 11x + 5=Ax^{(2)} +Bx^{(1)} +C

             = Ax(x -1) + Bx + C  ------ equation no.01.

Putting x = 0 we get C = 5.

Putting x = 1 we get 9 + 11 + 5 = B + C

                                 B+C=25

                                B+5=25\\B=20        

                                                           

On comparing like term in equation no.01. we get A = 9.

On putting in equation no.01. we get.

\delta f(x)  = 9x^{2}  + 20x + 5

On Integrating, we get.

f(x)  =  \frac{9x^{(3)} }{3}  +  \frac{20x^{(2)} }{2} + 5x+C_{1}

                       where C1 is constant of Integration.

       = 3x(x -1) (x- 2) + 10x(x -1) + 5x + C1

        f(x) = 3x^{3}  + x2 + x + C

    Thus,the function whose first difference is 9x^2+11x+5 is f(x) = 3x^{3}  + x2 + x + C.

#SPJ2

Similar questions