Math, asked by barathivelu116, 10 months ago


Find the GCD of 6x3-30x2+60x – 48 and 3x3-12x2+21x-18. ​

Answers

Answered by hukam0685
2

Step-by-step explanation:

Given:6 {x}^{3}  - 30 {x}^{2}  + 60x - 48 and 3 {x}^{3}  - 12 {x}^{2}  + 21x - 18 \\

To find: GCD of both polynomial.

Solution:

Step 1: Assume one as f(x) and other as g(x)

Let

f(x) = 6 {x}^{3}  - 30 {x}^{2}  + 60x - 48

and

g(x) = 3{x}^{3}  - 12{x}^{2}  + 21x - 18

Step 2: Divide f(x) by g(x)

 3{x}^{3}  - 12 {x}^{2}  + 21x - 18 )6 {x}^{3}  - 30 {x}^{2}  + 60x - 48(2  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 6 {x}^{3}  - 24 {x}^{2}  + 42x - 36 \\ ( - ) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  -  -  -  -  -  -  -  -  - -  -  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 6 {x}^{2}  + 18x - 12 \\ or \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 6( {x}^{2}   -  3x + 2) \\

Step 3: Divide  3 {x}^{3}  - 12 {x}^{2}  + 21x - 18 by x²-3x+2

 {x}^{2}  - 3x + 2) \: 3 {x}^{3}  - 12 {x}^{2}  + 21x - 18(3x - 3 \\ 3 {x}^{3} - 9 {x}^{2}  + 6x \\ ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  -  -  -  -  -  -  -  -  \\  - 3 {x}^{2}  + 15x  - 18  \\  - 3{x}^{2}   +  9x - 6 \\ ( - ) \\  -  -  -  -  -  -  -  -  -  \\ 6x - 12 \\ or \\ 6(x - 2) \\

Step 4: Divide x²-3x+2 by (x-2)

x - 2) {x}^{2}  - 3x + 2( x - 1 \\  {x}^{2}  - 2x \\ ( - ) \\  -  -  -  -  -  -  \\  -x + 2 \\  - x + 2 \\ ( - ) \\  -  -  -  -  -  -  -  \\ 0 \\  -  -  -  -  -  -  -  -

Step 5: Remainder is 0 now,Thus (x-2) is a common factor of f(x) and g(x).

On analysis it is clear that 3 is also common in both.

Final answer:

GCD of 6 {x}^{3}  - 30{x}^{2}  + 60x - 48 and 3 {x}^{3}  - 12 {x}^{2}  + 21x - 18 is 3(x-2).

Hope it helps you.

Note*: It is better to take any common constant term out before start division.

After every division leave the constant term.

To learn more on brainly:

find the GCD of the polynomials

45(x4-x³-x²) and 75(8x5+x²)

https://brainly.in/question/43783839

Similar questions