Find the GCD of the following
Attachments:
Answers
Answered by
10
solution:-
given by:- seems attch
GCD =GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them.
given by:- seems attch
GCD =GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them.
Attachments:
Answered by
11
GCD (Greatest Common Divisor) or HCF (Highest Common Factor) of two numbers is the largest number that divides both of them. For example GCD of 20 and 28 is 4 and GCD of 98 and 56 is 14.
( 1 ) . c² - d² , c(c - d)
(c - d)(c + d) , c(c - d)
gcd = (c - d)
( 2 ) . (x⁴ - 27a³x , (x - 3a)²
x(x³ - 27a³) , (x - 3a)²
x(x - 3a)(x² + 9a² + 3ax) , (x - 3a)(x - 3a)
gcd = (x - 3a)
( 3 ). m² - 3m - 18 , m² + 5m + 6
(m² - 6m + 3m - 18) , (m² + 3m + 2m + 6)
[m(m - 6) + 3(m - 6)] , [m(m + 3) + 2(m + 3)]
(m + 3)(m - 6) , (m + 3)(m + 2)
gcd = (m + 3)
( 4 ) . x² + 14x + 33 , x³ + 10x² - 11x
(x² + 11x + 3x + 33) , x(x² + 11x - x - 11)
[x(x + 11) + 3(x + 11)] , x[x(x + 11) - 1(x + 11)]
(x + 3)(x + 11) , x(x - 1)(x + 11)
GCD = (x + 11)
( 5 ). x² + 3xy + 2y² , x² + 5xy + 6y²
(x² + 2xy + xy + 2y²) , (x² + 3xy + 2xy + 6y²)
[x(x + 2y) + y(x + 2y)] , [x(x + 3y) + 2y(x + 3y)]
(x + y)(x + 2y) , (x + 2y)(x + 3y)
GCD = (x + 2y)
( 1 ) . c² - d² , c(c - d)
(c - d)(c + d) , c(c - d)
gcd = (c - d)
( 2 ) . (x⁴ - 27a³x , (x - 3a)²
x(x³ - 27a³) , (x - 3a)²
x(x - 3a)(x² + 9a² + 3ax) , (x - 3a)(x - 3a)
gcd = (x - 3a)
( 3 ). m² - 3m - 18 , m² + 5m + 6
(m² - 6m + 3m - 18) , (m² + 3m + 2m + 6)
[m(m - 6) + 3(m - 6)] , [m(m + 3) + 2(m + 3)]
(m + 3)(m - 6) , (m + 3)(m + 2)
gcd = (m + 3)
( 4 ) . x² + 14x + 33 , x³ + 10x² - 11x
(x² + 11x + 3x + 33) , x(x² + 11x - x - 11)
[x(x + 11) + 3(x + 11)] , x[x(x + 11) - 1(x + 11)]
(x + 3)(x + 11) , x(x - 1)(x + 11)
GCD = (x + 11)
( 5 ). x² + 3xy + 2y² , x² + 5xy + 6y²
(x² + 2xy + xy + 2y²) , (x² + 3xy + 2xy + 6y²)
[x(x + 2y) + y(x + 2y)] , [x(x + 3y) + 2y(x + 3y)]
(x + y)(x + 2y) , (x + 2y)(x + 3y)
GCD = (x + 2y)
Similar questions