Math, asked by shreeyagondhalekar29, 5 months ago

Find the general solution :​

Attachments:

Answers

Answered by BrainlyPopularman
10

GIVEN :

  \\ \bf \implies \dfrac{ { \partial}^{2}z}{ \partial x ^{2} } - 4 \dfrac{ { \partial}^{2}z}{ \partial x \partial y} +4\dfrac{ { \partial}^{2}z}{ \partial y ^{2} } = 0\\

TO FIND :

• General solution = ?

SOLUTION :

  \\ \bf \implies \dfrac{ { \partial}^{2}z}{ \partial x ^{2} } - 4 \dfrac{ { \partial}^{2}z}{ \partial x \partial y} +4\dfrac{ { \partial}^{2}z}{ \partial y ^{2} } = 0\\

• We should write this as –

  \\ \bf \implies{D}^{2}z- 4 DD'z+4 {D'}^{2} z= 0\\

• Here –

  \\ \bf \dashrightarrow D \to \dfrac{ \partial}{ \partial x} \: , \: D'\to \dfrac{ \partial}{ \partial y}\\

• So that –

  \\ \bf \implies({D}^{2}- 4 DD'+4 {D'}^{2})z= 0\\

• Here , R.H.S. is zero . Hence , P.I. = 0

• Now let's find C.F.

  \\ \bf \implies({D}^{2}- 4 DD'+4 {D'}^{2})z= 0\\

• Auxiliary equation –

  \\ \bf \implies{m}^{2}- 4m+4= 0\\

  \\ \bf \implies{(m - 2)}^{2}= 0\\

  \\ \bf \implies m = 2,2\\

• So that C.F.

  \\ \large\implies \red{ \boxed{ \bf C.F. =  \phi_1(y + 2x) +x\phi_2(y + 2x)}}\\

• Hence , General solution –

  \\\implies \bf Z =C.F. +P.I.\\

  \\\implies \bf Z =\phi_1(y + 2x) +x\phi_2(y + 2x)+0\\

\\ \large\implies \red{ \boxed{ \bf Z=  \phi_1(y + 2x) +x\phi_2(y + 2x)}}\\


AlluringNightingale: Awesome
BrainlyPopularman: Thanks
Similar questions