Math, asked by eishamurriam, 1 month ago

Find the general solution and indicate method used:-
yy' + xy²= x​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y \frac{dy}{dx}   + x {y}^{2} = x \\

 Let y^{2}=t\\

 \implies 2y\frac{dy}{dx}=\frac{dt}{dx}\\

so,

 \implies \frac{1}{2} \frac{dt}{dx}   + x t = x \\

 \implies \frac{dt}{dx}   +2 x t = 2x \\

I.F. =  {e}^{ \int2xdx}  =  {e}^{ {x}^{2} }

 \therefore \: t {e}^{ {x}^{2} }  =  \int \: 2x {e}^{ {x}^{2} } dx \\

 \implies \: t {e}^{ {x}^{2} }  = {e}^{ {x}^{2} } + c \\

 \implies \:  {y}^{2} {e}^{ {x}^{2} }  = {e}^{ {x}^{2} } + c \\

Similar questions