Find the general solution for the equation cos 4x =cos 2x.
Answers
Answered by
87
cos4x = cos2x
Using formula : cos2a = 2cos²a - 1
2cos²2x - 1 = cos2x ⇒ 2cos²2x - cos2x -1 = 0
⇒ 2cos²2x - 2cos2x + cos2x - 1 = 0
⇒ 2cos2x(cos2x-1 ) + 1 (cos2x-1) = 0
⇒ (cos2x-1)(2cos2x + 1) = 0
⇒ cos2x = 1
⇒ 2x = 2nπ +- 0 ⇒ x = nπ
or cos2x = -1/2
⇒ 2x = 2nπ +- 2π/3 ⇒ x = nπ +- π/3
Intersection : x ∈ nπ U nπ +- π/3
Hope my answer is correct.
Using formula : cos2a = 2cos²a - 1
2cos²2x - 1 = cos2x ⇒ 2cos²2x - cos2x -1 = 0
⇒ 2cos²2x - 2cos2x + cos2x - 1 = 0
⇒ 2cos2x(cos2x-1 ) + 1 (cos2x-1) = 0
⇒ (cos2x-1)(2cos2x + 1) = 0
⇒ cos2x = 1
⇒ 2x = 2nπ +- 0 ⇒ x = nπ
or cos2x = -1/2
⇒ 2x = 2nπ +- 2π/3 ⇒ x = nπ +- π/3
Intersection : x ∈ nπ U nπ +- π/3
Hope my answer is correct.
Phiba:
thank You
Answered by
21
Answer:
here is your answer mate
Step-by-step explanation:
2cos²2x - 1 = cos2x ⇒ 2cos²2x - cos2x -1 = 0
⇒ 2cos²2x - 2cos2x + cos2x - 1 = 0
⇒ 2cos2x(cos2x-1 ) + 1 (cos2x-1) = 0
⇒ (cos2x-1)(2cos2x + 1) = 0
⇒ cos2x = 1
and
⇒ 2x = 2nπ +- 0 ⇒ x = nπ
cos2x = -1/2
⇒ 2x = 2nπ +- 2π/3 ⇒ x = nπ +- π/3
Similar questions