Math, asked by reddyharshava5916, 1 year ago

Find the general solution if (1+y^2)+(x-e^tan-1y)dy/dx=0

Answers

Answered by CarlynBronk
47

Answer:

The Differential equation is,

(1+y^2)+(x-e^{tan^{-1}y})\frac{dy}{dx}=0\\\\ \frac{dx}{dy}+\frac{(x-e^{tan^{-1}y})}{1+y^2}=0

\frac{dx}{dy}+\frac{x}{1+y^2}=\frac{e^{tan^{-1}y}}{1+y^2}

Integrating factor

e^{\int {\frac{1}{1+y^2} \, dy=e^{tan^{-1}y}

Multiplying both sides by integrating factor,

e^{tan^{-1}y}[\frac{dx}{dy}+\frac{x}{1+y^2}]=\frac{(e^{tan^{-1}y})^2}{1+y^2}

and now integrating with respect to y, we get

xe^{tan^{-1}y}=\int {\frac{(e^{tan^{-1}y})^2}{1+y^2}} \, dx

On, RHS, substitute,

tan^{-1}y=z, \\\\ d z=\frac{1}{1+y^2}dy

xe^{tan^{-1}y}=\int {e^{2z}} \, dz\\\\ xe^{tan^{-1}y}=\frac{e^{2z} }{2}

xe^{tan^{-1}y}=\frac{e^{2tan^{-1}y}}{2}+K, where K is any constant.

Answered by sidthegreatest
7

Step-by-step explanation:

Attachments:
Similar questions