Find the General Solution of 2Sin²x + 3Cosx=0
Class — 11
Subject — Mathematics
Chapter — Trigonometric Functions
Answers
Answered by
22
2sin²x + 3cosx = 0
⇒ 2(1 - cos²x) + 3cosx = 0
⇒ 2 - 2cos²x + 3cosx = 0
⇒ 2cos²x - 3cosx - 2 = 0
⇒ 2cos²x - 4cosx + cosx - 2 = 0
⇒ 2cosx(cosx - 2) + (cosx - 2) = 0
⇒ (2cosx + 1)(cosx - 2) = 0
HLO..
IPPEM KANARILELO..
⇒ cosx - 1/2, cosx = 2[Not possible]
⇒ cosx = -1/2
⇒ x = 120°,240°
⇒ x = (2π/3) + 2πn, x = (4π/3) + 2πn
Answered by
1
Step-by-step explanation:
2(1- Cos²x) + 3Cosx = 0
2 - 2cos²x + 3 cosx = 0
2Cos²x - 3Cosx - 2 = 0
2Cos²x -4 Cosx + Cosx -2 = 0
2Cosx ( Cosx - 2) + 1 ( Cosx - 2) =0
(2Cosx +1) (Cosx -2) = 0
Now,
2Cosx = -1
2Cosx = (2n + 1)π
Cosx = (n+ 1/2)π/2 ✔️
Cosx = 2 (Not possible)
Range [-1,1]
Similar questions