find the general solution of cos mx+sin nx=0
Answers
Answered by
0
Answer:
My attempt:
sin(mx)=−sin(nx)
=cos(π2−mx)=cos(π2+nx)
Using cosθ=cosα⇒θ=2nπ±α,
CASE 1:θ=2nπ+α
π2−mx=2pπ+(π2+nx)
⇒x=−2pπm+n
CASE 2:θ=2nπ−α
π2−mx=2qπ−(π2+nx)
⇒x=(2q−1)πn−m
⟹x=−2pπm+n or x=(2q−1)πn−m
Answered by
0
cos mx +sin nx =0
cos mx+cos(90degree - nx)=0
=)cos(mx+90-nx)=0
=)mx+90+nx=0
=)mx+nx=-90
=)x(m+n)= -90
=)x= -90/m+n
thats solve
Similar questions