Math, asked by komalkurhe22, 1 year ago

find the general solution of differential equation (D^2-4D+2)Y=0​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{(D^2-4\,D+2)y=0}

\underline{\textbf{To find:}}

\textsf{General solution of the differential equation}

\underline{\textbf{Solution:}}

\mathsf{Consider,}\;\mathsf{(D^2-4\,D+2)y=0}

\textsf{Characteristic equation is}

\mathsf{m^2-4m+2=0}

\implies\mathsf{m^2-4m+4=2}

\implies\mathsf{(m-2)^2=2}

\implies\mathsf{m-2=\pm\,\sqrt{2}}

\implies\mathsf{m=2\,\pm\,\sqrt{2}}

\textsf{Since the roots are real and distinct,}

\textsf{the general solution is}

\mathsf{y=A\;e^{m_1\,x}+B\;e^{m_2\,x}}

\boxed{\mathsf{y=A\;e^{(2+\sqrt{2})x}+B\;e^{(2-\sqrt{2})x}}}

Similar questions