"Find the general solution of diffirential equation (x-y-2)dx-(2x-2y-3)dy=0"
Answers
Given Differential equation is
can be rewritten as
Now, Substitute
On differentiating both sides w. r. t. x, we get
So, Substitute all these values in above expression, we get
On separating the variables, we get
On integrating both sides, we get
So, required solution is
Additional Information :-
Step-by-step explanation:
\large\underline{\sf{Solution-}}
Solution−
Given Differential equation is
\begin{gathered}\rm \: (x - y - 2)dx - (2x - 2y - 3)dy = 0 \\ \end{gathered}
(x−y−2)dx−(2x−2y−3)dy=0
can be rewritten as
\begin{gathered}\rm \: (x - y - 2)dx = (2x - 2y - 3)dy \\ \end{gathered}
(x−y−2)dx=(2x−2y−3)dy
\begin{gathered}\rm \: \dfrac{dy}{dx} = \dfrac{x - y - 2}{2x - 2y - 3} \\ \end{gathered}
dx
dy
=
2x−2y−3
x−y−2
\begin{gathered}\rm \: \dfrac{dy}{dx} = \dfrac{x - y - 2}{2(x - y) - 3} \\ \end{gathered}
dx
dy
=
2(x−y)−3
x−y−2
Now, Substitute
\begin{gathered}\rm \: x - y = z \\ \end{gathered}
x−y=z
On differentiating both sides w. r. t. x, we get
\begin{gathered}\rm \: 1 - \dfrac{dy}{dx} = \dfrac{dz}{dx} \\ \end{gathered}
1−
dx
dy
=
dx
dz
\begin{gathered}\rm\implies \:\rm \: \dfrac{dy}{dx} =1 - \dfrac{dz}{dx} \\ \end{gathered}
⟹
dx
dy
=1−
dx
dz
So, Substitute all these values in above expression, we get
\begin{gathered}\rm \: 1 - \dfrac{dz}{dx} = \dfrac{z - 2}{2z - 3} \\ \end{gathered}
1−
dx
dz
=
2z−3
z−2
\begin{gathered}\rm \: \dfrac{dz}{dx} = 1 - \dfrac{z - 2}{2z - 3} \\ \end{gathered}
dx
dz
=1−
2z−3
z−2
\begin{gathered}\rm \: \dfrac{dz}{dx} = \dfrac{2z - 3 - z + 2}{2z - 3} \\ \end{gathered}
dx
dz
=
2z−3
2z−3−z+2
\begin{gathered}\rm \: \dfrac{dz}{dx} = \dfrac{z - 1}{2z - 3} \\ \end{gathered}
dx
dz
=
2z−3
z−1
On separating the variables, we get
\begin{gathered}\rm \: \dfrac{2z - 3}{z - 1} \: dz = dx \\ \end{gathered}
z−1
2z−3
dz=dx
On integrating both sides, we get
\begin{gathered}\rm \: \displaystyle\int\rm \dfrac{2z - 3}{z - 1} \: dz =\displaystyle\int\rm dx \\ \end{gathered}
∫
z−1
2z−3
dz=∫dx
\begin{gathered}\rm \: \displaystyle\int\rm \dfrac{2z - 2 - 1}{z - 1} \: dz = x + c \\ \end{gathered}
∫
z−1
2z−2−1
dz=x+c
\begin{gathered}\rm \: \displaystyle\int\rm \dfrac{2(z - 1) - 1}{z - 1} \: dz = x + c \\ \end{gathered}
∫
z−1
2(z−1)−1
dz=x+c
\begin{gathered}\rm \: \displaystyle\int\rm \bigg(2 - \dfrac{1}{z - 1} \bigg) \: dz = x + c \\ \end{gathered}
∫(2−
z−1
1
)dz=x+c
\begin{gathered}\rm \: 2z - log |z - 1| = x + c \\ \end{gathered}
2z−log∣z−1∣=x+c
\begin{gathered}\rm \: 2(x - y) - log |x - y - 1| = x + c \\ \end{gathered}
2(x−y)−log∣x−y−1∣=x+c
\begin{gathered}\rm \: 2x - 2y- log |x - y - 1| = x + c \\ \end{gathered}
2x−2y−log∣x−y−1∣=x+c
\begin{gathered}\rm \: x - 2y- log |x - y - 1| = c \\ \end{gathered}
x−2y−log∣x−y−1∣=c
So, required solution is
\begin{gathered}\rm\implies \:\boxed{ \rm{ \:\rm \: x - 2y- log |x - y - 1| = c \: \: }} \\ \end{gathered}
⟹
x−2y−log∣x−y−1∣=c
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}
f(x)
k
sinx
cosx
sec
2
x
cosec
2
x
secxtanx
cosecxcotx
tanx
x
1
e
x
∫f(x)dx
kx+c
−cosx+c
sinx+c
tanx+c
−cotx+c
secx+c
−cosecx+c
logsecx+c
logx+c
e
x
+c