Math, asked by penkeysumalatha1007, 1 month ago

find the general solution of dy/dx=(x+y)^2 /5,y(0)=1

Attachments:

Answers

Answered by shadowsabers03
6

We're given the differential equation,

\small\text{$\longrightarrow\dfrac{dy}{dx}=\dfrac{(x+y)^2}{5}\quad\quad\dots(1)$}

Substitute,

\small\text{$\longrightarrow u=x+y$}

\small\text{$\longrightarrow y=u-x$}

\small\text{$\longrightarrow\dfrac{dy}{dx}=\dfrac{du}{dx}-1$}

Then (1) becomes,

\small\text{$\longrightarrow\dfrac{du}{dx}-1=\dfrac{u^2}{5}$}

\small\text{$\longrightarrow\dfrac{du}{dx}=\dfrac{u^2+5}{5}$}

\small\text{$\longrightarrow\dfrac{dx}{du}=\dfrac{5}{u^2+5}$}

\small\text{$\displaystyle\longrightarrow x=\int\dfrac{5}{u^2+5}\ du$}

\small\text{$\displaystyle\longrightarrow x=5\int\dfrac{1}{u^2+\left(\sqrt5\right)^2}\ du$}

We have,

  • \small\text{$\displaystyle\int\dfrac{dx}{(ax+b)^2+c^2}=\dfrac{1}{ac}\,\tan^{-1}\left(\dfrac{ax+b}{c}\right)+C$}

Thus,

\small\text{$\longrightarrow x=5\cdot\dfrac{1}{1\cdot\sqrt5}\,\tan^{-1}\left(\dfrac{u}{\sqrt5}\right)+C$}

\small\text{$\longrightarrow x=\sqrt5\,\tan^{-1}\left(\dfrac{u}{\sqrt5}\right)+C$}

Taking \small\text{$u=x+y,$}

\small\text{$\longrightarrow x=\sqrt5\,\tan^{-1}\left(\dfrac{x+y}{\sqrt5}\right)+C\quad\quad\dots(2)$}

\small\text{$\longrightarrow x-\sqrt5\,\tan^{-1}\left(\dfrac{x+y}{\sqrt5}\right)=C$}

At \small\text{$(x,\ y)=(0,\ 1),$}

\small\text{$\longrightarrow -\sqrt5\,\tan^{-1}\left(\dfrac{1}{\sqrt5}\right)=C$}

Then (2) becomes,

\small\text{$\longrightarrow x=\sqrt5\,\tan^{-1}\left(\dfrac{x+y}{\sqrt5}\right)-\sqrt5\,\tan^{-1}\left(\dfrac{1}{\sqrt5}\right)$}

\small\text{$\longrightarrow x=\sqrt5\left[\tan^{-1}\left(\dfrac{x+y}{\sqrt5}\right)-\tan^{-1}\left(\dfrac{1}{\sqrt5}\right)\right]$}

We have,

  • \small\text{$\tan^{-1}a-\tan^{-1}b=\tan^{-1}\left(\dfrac{a-b}{1+ab}\right)$}

Then,

\small\text{$\longrightarrow x=\sqrt5\tan^{-1}\left(\dfrac{\frac{x+y-1}{\sqrt5}}{1+\frac{x+y}{5}}\right)$}

\small\text{$\longrightarrow x=\sqrt5\tan^{-1}\left(\dfrac{\sqrt5(x+y-1)}{x+y+5}\right)$}

\small\text{$\longrightarrow\dfrac{x+y-1}{x+y+5}=\dfrac{\tan\left(\dfrac{x}{\sqrt5}\right)}{\sqrt5}$}

By rule of componendo and dividendo,

\small\text{$\longrightarrow\dfrac{(x+y+5)+(x+y-1)}{(x+y+5)-(x+y-1)}=\dfrac{\sqrt5+\tan\left(\dfrac{x}{\sqrt5}\right)}{\sqrt5-\tan\left(\dfrac{x}{\sqrt5}\right)}$}

\small\text{$\longrightarrow\dfrac{x+y+2}{3}=\dfrac{\sqrt5+\tan\left(\dfrac{x}{\sqrt5}\right)}{\sqrt5-\tan\left(\dfrac{x}{\sqrt5}\right)}$}

\small\text{$\longrightarrow\underline{\underline{y=\dfrac{3\left(\sqrt5+\tan\left(\dfrac{x}{\sqrt5}\right)\right)}{\sqrt5-\tan\left(\dfrac{x}{\sqrt5}\right)}-x-2}}$}

Similar questions