Find the general solution of
sin x +sin 3x +sin 5x = 0
Answers
Answer:
sinx + sin3x + sin5x = 0
sin3x + (sinx + sin5x) = 0
we know,
sinC + sinD = 2sin(C + D)/2.cos(C-D)/2
sin3x + {2sin(x + 5x)/2.cos(5x-x)/2}= 0
sin3x + {2sin3x.cos2x} = 0
sin3x(1+2cos2x) = 0
Here, sin3x = 0 or cos2x = -1/2
sin3x = 0
3x =nπ
x = nπ/3
again,
cos2x = -1/2
cos2x = -cos(π/3)
cos2x = cos(π -π/3)
cos2x = cos(2π/3)
we know,
If cos∅ = cosA then,
∅ = 2nπ ± A
2x = 2nπ ± (2π/3)
x = nπ ± (π/3)
Hence, the solutions are
x = nπ/3 or nπ ±(π/3)
Answer:
x = n π / 3 OR x = n π ± 2 π / 3
Step-by-step explanation:
Given :
sin x + sin 3 x + sin 5 x = 0
( sin 5 x + sin x ) + sin 3 x = 0
Using sum to product rule :
sin C + sin D = 2 sin ( ( C + D ) / 2 ) . cos ( ( C - D ) / 2 )
= > 2 sin 3 x . cos 4 x + sin 3 x = 0
Take out sin 3 x common :
= > sin 3 x ( 2 cos 4 x + 1 ) = 0
Case first :
sin 3 x = 0
= > 3 x = n π
= > x = n π / 3
Case second :
2 cos 2 x + 1 = 0
= > 2 cos 2 x = - 1
= > cos 2 x = - 1 / 2
= > cos 2 x = cos ( π - π / 3 )
= > cos 2 x = cos 2 π / 3
We know :
if cos Ф = cos α
= > Ф = 2 n π ± α
= > 2 x = 2 n π ± 2 π / 3
= > x = n π ± 2 π / 3