Math, asked by tysonreturnsagain, 9 months ago

.
Find the general solution of sin x = tan X.​

Answers

Answered by tanishvaibhav78
3

Answer:

Step-by-step explanation:

sin θ = 0 implies θ = nπ and cos θ = cos α implies θ = 2nπ±α , n ∈ Z. ∴ the required general solution is x = nπ or x = 2mπ, where n, m ∈ Z.

Answered by adityajadhav192005
28

 \sin(x)  =  \tan(x)  \\  \\  \sin(x)  =  \frac{ \sin(x) }{ \cos(x) }  \\  \\  \sin(x)  \cos(x)  -  \sin(x)  = 0 \\  \\  \sin(x) ( \cos(x)  - 1)=0 \\  \\  \sin(x)  = 0 \: or \:  \cos(x )  = 1 \\  \\  \sin(x)  =  \sin(0) \:   or \:  \cos(x)  =  \cos(0)  \\  \\

  \bf{Since\: , sin \theta=0 \:implies \:\theta=n\pi \:and \: cos \theta=cos \alpha \:implies \: \theta=2n \pi \pm \alpha , n \in Z}

 \bf{x=n \pi, \: x=2m \pi \pm 0}

The required general solution is

 \bf{x = n\pi \: or \: x = 2m \pi \: where \: n \: , \: m \: \in Z}

Similar questions