find the general solution of
sinx+cos x+secx+cosecx=0
chapter trigonometry functions class 11
Answers
Answered by
2
Given : Trigonometric equation, sinx + cosx + secx + cosecx = 0
To find : Find the general solution of given trigonometric equation.
solution : sinx + cosx + secx + cosecx = 0
⇒sinx + cosx + 1/cosx + 1/sinx = 0
⇒sinx + cosx + (sinx + cosx)/sinx . cosx = 0
⇒(sinx + cosx) [sinx cosx + 1]/sinx cosx = 0
⇒√2sin(x + π/4) {1/2(2sinx cosx) + 1}/sinx cosx = 0
⇒√2 sin(x + π/4) (sin2x + 2)/(2sinx cosx) = 0
⇒√2sin(x + π/4)(sin2x + 2)/sin2x = 0
from above,
sin(x + π/4) = 0 ⇒x = nπ - π/4
sin2x + 2 = 0 ⇒x = no solution
sin2x ≠ 0 ⇒x ≠ nπ
Therefore solution of given trigonometric equation is x = nπ - π/4 , where n is integral number.
Similar questions
Math,
4 months ago
Social Sciences,
4 months ago
Science,
4 months ago
Computer Science,
9 months ago
English,
9 months ago
Math,
1 year ago