Math, asked by omkarpatil5574zz, 4 months ago

Find the general solution of sinx + cosx =-1​

Answers

Answered by mathdude500
5

\large\underline\purple{\bold{Solution :-  }}

\tt \longrightarrow \: sinx \:  +  \: cosx =  - 1

☆ on squaring both sides, we get

 \tt\implies \:{(sinx + cosx)}^{2}  =  {( - 1)}^{2}

\tt\implies \: {sin}^{2} x +  {cos}^{2} x + 2 \: sinx \: cosx \:  = 1

\tt\implies \:1 + sin2x = 1

\tt\implies \:sin \: 2x = 0

\tt\implies \:2x \:  = n\pi

\tt\implies \:x = \dfrac{n\pi}{2}  \: for \: every \: n \: is \: an \: integer.

Similar questions