Math, asked by mili0204, 1 year ago

find the general solution
of tan ^3 x-tan 3 x=0

Answers

Answered by azizalasha
1

Answer:

solved below

Step-by-step explanation:

tan ^3 x-tan 3 x=0

let tan x = t

t³ - ( 3t -t³) / 1-3t² = 0

t³ - t( 3 -t²) / 1-3t² = 0

t { t² - ( 3 -t²) / 1-3t²   } = 0

t { t²(1-3t²) - ( 3 -t²)  } = 0

t { t²-3t∧4 -  3 +t²)  } = 0

t { 3t∧4 -2t²  + 3  } = 0

t ( t²-1) ( t² - 1/3) = 0

t = 0 , ±1 , ±1/√3

t = 0  : x = 0, π , 2π , ... = nπ , n integer≥0

t = ±1  : x =  nπ/4  , n integer ≠0

t = ±1/√3 : x = nπ/6 , n integer ≠0

Similar questions