Math, asked by Vmusale, 10 months ago

find the general solution of
tan theta = -1​

Answers

Answered by Anonymous
62

\large{\underline{\underline{\sf{\purple{Given}}}}}\\

  • tan theta = -1

\large{\underline{\underline{\sf{\purple{To\: find }}}}}\\

  • General solution of given equation.

\large{\underline{\underline{\sf{\purple{Solution}}}}}\\

\sf{\implies \tan \theta = -1}\\

\sf{\implies - 1 = - \tan (\frac{\pi}{4}) }\\

\sf{\implies - \tan( \frac{\pi}{4}) = \tan ( - \frac{\pi}{4} )}\\

\sf{\implies \tan ( \frac{-\pi }{4}) = \tan ( \pi - \frac{ \pi}{4} ) }\\

\sf{\implies \tan ( \pi - \frac{ \pi}{4} ) = \tan ( \frac{3 \pi}{4}) }\\

\sf{\implies \tan \theta = \tan ( \frac{ 3 \pi}{4}) }\\

\sf{\implies \theta = \frac{ 3 \pi}{4} }\\

We already know it will be written as :-

\sf{\implies \theta = n \pi  + \alpha , n \: belongs \: to \: Z}\\

{\underline{\sf{\implies \theta = n \pi + \frac{3 \pi}{4} , n \; belongs\: to \: Z}}}\\

Other important identities :-

Trigonometric equation = General equation .

\sf{\implies \sin \theta = \sin \alpha ;\: GS \:  \theta = n \pi + \alpha + {-1}^{n} \alpha , n \: belongs\: to \: Z}\\

\sf{\implies \cos \theta = \cos \alpha ; \: GS \: \theta = 2n \pi \pm \alpha , n \: belongs\: to \: Z}\\

\sf{\implies \sin \theta = 0 \: , GS\: \: theta = n \pi ,\: n \:belong \:to\: Z }\\

\sf{\implies \cos \theta = 0 , \: GS \: \theta = (2n +1 ) \frac{\pi}{2} , n \: belongs\: to \: Z }\\

\sf{\implies \tan \theta = 0 , \: GS\: \theta = n \pi , \: n\: belongs\: to \: Z }\\

Similar questions