Math, asked by rd361273, 19 days ago

find the general solution of tan2x=-cot(x+pi/2)​

Answers

Answered by lavanyapailla0112
0

Step-by-step explanation:

Tan2x = -cot[90+x]

tan2x = tanx

2x =x

x=0

Answered by mathdude500
11

\large\underline{\sf{Given- }}

\rm :\longmapsto\:tan2x =  -  \: cot\bigg(x + \dfrac{\pi}{2}  \bigg)

\large\underline{\sf{To\:Find - }}

General solution

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:tan2x =  -  \: cot\bigg(x + \dfrac{\pi}{2}  \bigg)

We know,

\boxed{ \bf{ \:   \: cot\bigg(x + \dfrac{\pi}{2} \bigg) =  -  \: tanx}}

So, using this, we get

\rm :\longmapsto\:tan2x =  - ( - tanx)

\rm :\longmapsto\:tan2x =  tanx

\boxed{ \bf{ \: tanx \:  =  \: tany \:  \implies \: x = n\pi + y \:  \forall \: n \in \: Z}}

So, using this identity, we get

\rm :\longmapsto\:2x = n\pi + x\:  \:  \:  \:  \:  \forall \: n \in \: Z

\rm :\longmapsto\:2x - x = n\pi \:  \:  \:  \:  \:  \forall \: n \in \: Z

\bf\implies \:\:x= n\pi \:  \:  \:  \:  \:  \forall \: n \in \: Z

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \:  \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\:  \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\:  \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y\:  \forall \: n \in \: Z \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\:  \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y\:  \forall \: n \in \: Z \end{array}} \\ \end{gathered}\end{gathered}

Similar questions