Find the general solution of TanA+Tan2A+√3TanA.Tan2A=√3
Answers
Answered by
19
Hi ,
tanA + tan2A + √3 tanAtan2A = √3
tanA + tan2A = √3 - √3tanAtan2A
= √3 ( 1 - tanAtan2A )
( tanA + tan2A ) / ( 1 - tanAtan2A ) = √3
tan ( A + 2A ) = tan 60°
tan 3A = tan60°
3A= 60°
A = 60° /3
A = 20°
I hope this helps you.
:)
tanA + tan2A + √3 tanAtan2A = √3
tanA + tan2A = √3 - √3tanAtan2A
= √3 ( 1 - tanAtan2A )
( tanA + tan2A ) / ( 1 - tanAtan2A ) = √3
tan ( A + 2A ) = tan 60°
tan 3A = tan60°
3A= 60°
A = 60° /3
A = 20°
I hope this helps you.
:)
Similar questions
Science,
8 months ago
Hindi,
8 months ago
English,
8 months ago
Accountancy,
1 year ago
English,
1 year ago