Math, asked by dakshgirdhar11, 15 hours ago

Find the general solution of the differential equation ​

Attachments:

Answers

Answered by mathdude500
6

Given Question :-

Find the general solution of the differential equation :

\rm \: \dfrac{dy}{dx}  = \dfrac{5x + 3}{2y + 7}  \\

\large\underline{\sf{Solution-}}

Given differential equation is

\rm \: \dfrac{dy}{dx}  = \dfrac{5x + 3}{2y + 7}  \\

On separating the variables, we get

\rm \: (2y + 7)dy \:  =  \: (5x + 3)dx \\

On integrating both sides, we get

\rm \: \displaystyle\int\rm (2y + 7)dy \:  =  \: \displaystyle\int\rm (5x + 3)dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm  {x}^{n} =  \frac{ {x}^{n + 1} }{n + 1} + c \: }} \\

and

\boxed{ \rm{ \:\displaystyle\int\rm k \: dx \:  =  \: kx \:  +  \: c \: }} \\

So, using these results, we get

\rm \: 2 \times \dfrac{ {y}^{2} }{2}  + 7y = 5 \times \dfrac{ {x}^{2} }{2}  + 3x + c \\

\rm \:  {y}^{2}   + 7y  =  \dfrac{5{x}^{2} }{2}  + 3x + c \\

can be further rewritten as on multiply both sides by 2,

\rm \:  2{y}^{2} + 14y = {5x}^{2}+6x + 2c \\

\rm \:  2{y}^{2} + 14y = {5x}^{2}+6x + d \:  \:  \:  \{where \: d = 2c \}\\

Hence, general solution of differential equation

\rm \: \dfrac{dy}{dx}  = \dfrac{5x + 3}{2y + 7} \: is \:   \boxed{ \rm{ \:{2y}^{2} + 14y =  {5x}^{2} + 6x + d \: }}    \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions