Math, asked by adil8680, 1 month ago

Find the general solution of the differential equation tan y*(dy)/(dx)=sin(x+y) - sin(x-y).​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\rm{tan(y)\,\dfrac{dy}{dx}=sin(x+y)-sin(x-y)}

Applying sin(C) - sin(D) formula, we get,

\rm{\implies\,tan(y)\,\dfrac{dy}{dx}=2\,cos\left(\dfrac{x+y+x-y}{2}\right)\,sin\left(\dfrac{x+y-x+y}{2}\right)}

\rm{\implies\,tan(y)\,\dfrac{dy}{dx}=2\,cos\left(\dfrac{x+x}{2}\right)\,sin\left(\dfrac{y+y}{2}\right)}

\rm{\implies\,tan(y)\,\dfrac{dy}{dx}=2\,cos\left(\dfrac{2x}{2}\right)\,sin\left(\dfrac{2y}{2}\right)}

\rm{\implies\,tan(y)\,\dfrac{dy}{dx}=2\,cos(x)\,sin(y)}

\rm{\implies\,\dfrac{sin(y)}{cos(y)}\,\dfrac{dy}{dx}=2\,cos(x)\,sin(y)}

\rm{\implies\,\dfrac{dy}{cos(y)}=2\,cos(x)\,dx}

Integrating both sides,

\displaystyle\rm{\implies\,\int\dfrac{dy}{cos(y)}=2\int\,cos(x)\,dx}

\displaystyle\rm{\implies\,\int\,sec(y)\,dy=2\int\,cos(x)\,dx}

\displaystyle\rm{\implies\,\ln\left|sec(y)+tan(y)\right|=2\,sin(x)+C}

Similar questions