Math, asked by maheshtalpada412, 1 day ago

Find the general solution of the differential equation
 \boxed{\color{green}  \displaystyle \rm \frac{dy}{dx}  = x + y + xy + 1}
 \\ \rule{300pt}{0.1pt}

Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​​

Answers

Answered by ot7xbangtonboyz
11

 \huge \pink{ \pmb{ \bf{ \frak{answer}}}}

 \sf {Given:  -  \:  \:  \: (x + y + 1) \frac{dy}{dx}  = 1}

 \sf { \frac{dx}{dy}  = x + y +  + 1}

which is a linear differential equation with x as dependent variable:-

 {\bold{ \red{ \star \: { \boxed{Here, \:  P=−1  \: ; Q=y+1}}}}}</p><p></p><p>

 \sf \boxed{Integrating  \:  \: Factor \:  I.F \: </p><p></p><p> =  {e}^{pdy} }

 \bold{I.F. \: = \:   {e}^{∫ - dy</p><p></p><p>} </p><p>}</p><p>

Solution is given by :-

 \sf \:  x {e}^{ - y}  = ∫</p><p> {e}^{ - y} (y + 1)dy</p><p>

 \sf \: x {e}^{ - y}  = ∫</p><p></p><p> {ye}^{ - y} dy + ∫</p><p></p><p> {e}^{ - y} dy

 \implies \sf \:  {xe}^{ - y}  =  - y {e}^{ - y}  + ∫</p><p></p><p> {e}^{ - y} dy -  {e}^{ - y}   +  k

  \implies \sf \: x {e}^{ - y}  =  - y {e}^{ - y}  -  {e}^{ - y} -  {e}^{ - y}   + k

 \sf \implies \:  {xe}^{ - y}  =  -  {ye}^{ - y}  -  {2e}^{ - y}   + k

 \sf \implies \:  \: x =  {ke}^{y}  - (y + 2)

 \green{ \pmb{ \bf {\frak{hope \: its \: help \: u}}}}

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given differential equation is

\rm \: \dfrac{dy}{dx} = x + y + xy + 1 \\

can be rewritten as

\rm \: \dfrac{dy}{dx} = 1 + x + y + xy \\

can be re-arranged as

\rm \: \dfrac{dy}{dx} = (1 + x) + (y + xy) \\

\rm \: \dfrac{dy}{dx} = (1 + x) + y(1 + x) \\

\rm \: \dfrac{dy}{dx} = (1 + x)(1 + y) \\

On separating the variables, we get

\rm \: \dfrac{dy}{y + 1} = (1 + x)dx\\

On integrating both sides, we get

\rm \:\displaystyle\int\rm  \dfrac{dy}{y + 1} = \displaystyle\int\rm (1 + x)dx\\

\rm \: log |y + 1| = \dfrac{ {x}^{2} }{2} + x + c \\

Hence, The general solution of differential equation

\rm \: \dfrac{dy}{dx} = x + y + xy + 1 \: is \:   \\ \:  \\ \red{  \rm \: log |y + 1| = \dfrac{ {x}^{2} }{2} + x + c }\\  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf kx + c \\ \\ \sf sinx &amp; \sf - \: cosx+ c \\ \\ \sf cosx &amp; \sf \: sinx + c\\ \\ \sf {sec}^{2} x &amp; \sf tanx + c\\ \\ \sf {cosec}^{2}x &amp; \sf - cotx+ c \\ \\ \sf secx \: tanx &amp; \sf secx + c\\ \\ \sf cosecx \: cotx&amp; \sf - \: cosecx + c\\ \\ \sf tanx &amp; \sf logsecx + c\\ \\ \sf \dfrac{1}{x} &amp; \sf logx+ c\\ \\ \sf {e}^{x} &amp; \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions