Find the general solution of the equation: 2 sin² θ = 3 cos θ.
Answers
Answered by
4
To find the general Solution
of the equation , convert the equation in either sine or cosine
So
discard this value because cosine can't reach till -2.
General Solution of the equation is
where k is any integer
of the equation , convert the equation in either sine or cosine
So
discard this value because cosine can't reach till -2.
General Solution of the equation is
where k is any integer
Answered by
3
Solution :
Here I am using A instead of theta.
2sin²A = 3cosA
=> 2( 1 - cos²A ) - 3cosA = 0
=> 2 - 2cos²A - 3cosA = 0
=> 2cos²A + 3cosA - 2 = 0
Splitting the middle term,
=> 2cos²A - cosA + 4cosA - 2 = 0
=>cosA( 2cosA - 1 )+2( 2cosA - 1 )=0
=> ( 2cosA - 1 )( cosA + 2 ) = 0
Therefore ,
2cosA - 1 = 0 or cosA + 2 = 0
cosA = 1/2 or cosA = -2 ( not possible )
[ Since , cos²A ≥ -1 ]
Now ,
cos A = 1/2
A = 2nπ ± ( π/3 )
•••••
Here I am using A instead of theta.
2sin²A = 3cosA
=> 2( 1 - cos²A ) - 3cosA = 0
=> 2 - 2cos²A - 3cosA = 0
=> 2cos²A + 3cosA - 2 = 0
Splitting the middle term,
=> 2cos²A - cosA + 4cosA - 2 = 0
=>cosA( 2cosA - 1 )+2( 2cosA - 1 )=0
=> ( 2cosA - 1 )( cosA + 2 ) = 0
Therefore ,
2cosA - 1 = 0 or cosA + 2 = 0
cosA = 1/2 or cosA = -2 ( not possible )
[ Since , cos²A ≥ -1 ]
Now ,
cos A = 1/2
A = 2nπ ± ( π/3 )
•••••
Similar questions