Find the general solution of the equation: 3 sin⁴ x + cos⁴ x = 1.
Answers
Answered by
0
Answer:
x=π/4+2πk,where k is any integer
or
x=0+2πk,where k is any integer
Step-by-step explanation:
To find the general solution of the equation: 3 sin⁴ x + cos⁴ x = 1 try to convert the given equation in terms of cos or sine
As we know that sin²x=1-cos²x
so sin⁴x=(1-cos²x)²
3 (1-cos²x)² + cos⁴ x = 1
3[1+cos⁴ x-2cos²x]+cos⁴ x = 1
3+3cos⁴ x-6cos²x+cos⁴ x = 1
4cos⁴ x -6cos²x+2=0
2cos⁴ x-3cos²x+1=0
2cos⁴ x-2cos²x-cos²x+1=0
2cos²x(cos²x-1)-1(cos²x-1)=0
(cos²x-1)(2cos²x-1)=0
(cos²x-1)=0
cos²x=1
cos x=1
x= cos⁻¹ (1)
x=0
or
2cos²x-1=0
2cos²x=1
cos²x=1/2
cos x=±1/√2
x = cos⁻¹(±1/√2)
x=π/4
so solution of the equation are x=0,π/4
So general solution of the equation are
x=π/4+2πk,where k is any integer
or
x=0+2πk
Answered by
1
Solution :
3sin⁴x + cos⁴x = 1
=> 3( sin² x )² + ( cos² x )² = 1
=> 3[(1-cos2x )/2]²+[(1 +cos2x)/2]² = 1
=> 3[(1+cos²2x-2cos2x)/4]
+ [(1+cos²2x+2cos2x)/4] = 1
=> 3+3cos²2x-6cos2x
+1+cos²2x+2cos2x = 4
=> 4cos²2x - 4cos2x = 0
=> 4cos2x ( cos2x - 1 ) = 0
Therefore ,
4cos2x = 0 or cos2x - 1 = 0
=> cos 2x = 0 OR cos 2x = 1
1 - 2sin² x = 0 or 1 - 2sin²2x = 1
=> 2sin²x = 1 or 2sin² x = 0
=> sin² x = 1/2 or sin² x = 0
x = nπ ± ( π/4 ) or x = nπ , n € Z
•••••
3sin⁴x + cos⁴x = 1
=> 3( sin² x )² + ( cos² x )² = 1
=> 3[(1-cos2x )/2]²+[(1 +cos2x)/2]² = 1
=> 3[(1+cos²2x-2cos2x)/4]
+ [(1+cos²2x+2cos2x)/4] = 1
=> 3+3cos²2x-6cos2x
+1+cos²2x+2cos2x = 4
=> 4cos²2x - 4cos2x = 0
=> 4cos2x ( cos2x - 1 ) = 0
Therefore ,
4cos2x = 0 or cos2x - 1 = 0
=> cos 2x = 0 OR cos 2x = 1
1 - 2sin² x = 0 or 1 - 2sin²2x = 1
=> 2sin²x = 1 or 2sin² x = 0
=> sin² x = 1/2 or sin² x = 0
x = nπ ± ( π/4 ) or x = nπ , n € Z
•••••
Similar questions