Find the general solution of the equation 5cos2 θ + 7sin2 θ – 6 = 0
Answers
Answered by
0
7sin^2A+5cos^2A-6=0
2sin^2A+5sin^2A+5cos^2A-6=0
2sin^2A+5(sin^2A+cos^2A)-6=0
2sin^2A+5(1)-6=0
2sin^2A-1=0
Sin^2A=1/2
SinA=1/√2
SinA=sin45°
A=45° here theta=A
2sin^2A+5sin^2A+5cos^2A-6=0
2sin^2A+5(sin^2A+cos^2A)-6=0
2sin^2A+5(1)-6=0
2sin^2A-1=0
Sin^2A=1/2
SinA=1/√2
SinA=sin45°
A=45° here theta=A
Similar questions
Hindi,
7 months ago
Sociology,
1 year ago
Business Studies,
1 year ago
Science,
1 year ago
Science,
1 year ago