Math, asked by sap4, 1 year ago

Find the general solution of the equation of tanx=cotx

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{tan\,x=cot\,x}

\underline{\textbf{To find:}}

\textsf{The general solution of}\;\mathsf{tan\,x=cot\,x}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{tan\,x=cot\,x}

\mathsf{\dfrac{sin\,x}{cos\,x}=\dfrac{cos\,x}{sin\,x}}

\mathsf{sin^2x=cos^2x}

\mathsf{cos^2x-sin^2x=0}

\mathsf{cos\,2x=0}

\mathsf{cos\,2x=cos\,\dfrac{\pi}{2}}

\implies\mathsf{2x=2n\,\pi{\pm}\dfrac{\pi}{2}}

\implies\mathsf{x=n\,\pi{\pm}\dfrac{\pi}{4},\;\;\;n{\in}Z}

\textbf{The general solution of tanx=cotx is}

\bf\,x=n\,\pi{\pm}\dfrac{\pi}{4}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{5cm}$\\\mathsf{Solution\;of\;cos\,\theta=cos\,\alpha\;is}\\\\\mathsf{\;\;\theta=2n\pi{\pm}\alpha,\;\;\;n{\in}Z}\\$\end{minipage}}

Answered by VaibhavSR
0

Answer: x=n\pi±\frac{\pi }{4}

Step-by-step explanation:

  • Given,

     tan x=cot x

  ⇒\frac{sin x}{cos x} =\frac{cos x}{sin x}

  ⇒sin^{2}x=cos^{2}x

  ⇒cos^{2}x-sin^{2}x=0

  ⇒ cos 2x=0

  ⇒ cos 2x=cos \frac{\pi }{2}

  ⇒2x=\frac{\pi }{2}\\

  ∴ x=\frac{\pi }{4}

So, x=n\pi±\frac{\pi }{4} where n∈Z.

  • Hence,the general solution for this given expression is x=n\pi±\frac{\pi }{4}.

     #SPJ2

Similar questions