find the general solution of the equation sin^2A-2cosA+1/4=0
Answers
Step-by-step explanation:
Given :-
Sin² A - 2 Cos A +( 1/4 ) = 0
To find :-
Find the general solution of the equation?
Solution :-
Given equation is
Sin² A - 2 Cos A +( 1/4 ) = 0
=> (4 Sin² A - 8 Cos A + 1)/4 = 0
=> 4 Sin² A - 8 Cos A + 1 = 0×4
=> 4 Sin² A - 8 Cos A + 1 = 0
We know that
Sin² A + Cos² A = 1
=> Sin² A = 1 - Cos² A
=> 4(1 - Cos² A ) - 8 Cos A + 1 = 0
=> 4 - 4 Cos² A - 8 Cos A + 1 = 0
=> - 4 Cos² A - 8 Cos A + 5 = 0
=> -( 4 Cos² A + 8 Cos A - 5) = 0
=> 4 Cos² A + 8 Cos A - 5 = 0
=> 4 Cos² A -2 Cos A + 10 Cos A - 5 = 0
=> 2 Cos A ( 2 Cos A - 1) + 5 ( 2 Cos A - 1 ) = 0
=> (2 Cos A - 1) ( 2 Cos A + 5 ) = 0
=> 2 Cos A - 1 = 0 or 2 Cos A + 5 = 0
=> 2 Cos A = 1 or 2 Cos A = -5
=> Cos A = 1/2 or Cos A = -5/2
=> Cos A can not be -5/2
=> Cos A = 1/2
=> Cos A = Cos 60°
=> A = 60° or π/3
Therefore, A = 60° or π/3
Answer:-
The general solution for the given equation is 60° or π/3
Check :-
If A = 60° then LHS of the given equation
Sin² A - 2 Cos A +( 1/4 )
=> Sin² 60° -2 Cos 60° +(1/4)
=> (√3/2)²- 2(1/2) + (1/4)
=> (3/4)-(2/2)+(1/4)
=> (3/4)-(1)+(1/4)
=> (3+1)/4 - (1)
=> (4/4)-1
=> 1-1
=> 0
=> RHS
LHS = RHS is true for A = 60°
Used formulae:-
- Sin² A + Cos² A = 1
- Sin 30° = 1/2
- Cos 60° = 1/2
- Sin 60° = √3/2
- π = 180°