Math, asked by purohitkumar, 10 months ago

Find the general solution of the following differential equation (1 + Y square )+( x - e power tan inverse y)dy/dx=0

Answers

Answered by Anonymous
4

ANSWER

Given \: question \:   is \\  \\ (1 + y {}^{2} ) + (x - e {}^{ \tan {}^{ - 1} (y) } ) \frac{dy}{dx}  = 0  \\  \\  \frac{(1 + y {}^{2}) }{(e {}^{ \tan {}^{ - 1} (y) } - x) }  =  \frac{dy}{dx} ...(01) \\  \\ put \:  \:  \:  \tan {}^{ - 1} (y)  = z \\  \\ Differentiate \:  both \: sides \: w.r.t.y \\  \\  \frac{1}{1 + y {}^{2} }  =  \frac{dz}{dy}  \\  \\ from \: equation \:  01 \\   \\  \frac{(1 + y {}^{2} )}{(e {}^{z} - x) }  =  \frac{dz(1 + y {}^{2} )}{dx}  \\  \\  \frac{1}{e {}^{z}  - x}  =  \frac{dz}{dx}  \\  \\  \frac{dx}{dz}  = e {}^{z}  - 1 \\  \\  \frac{dx}{dz}  + 1 = e {}^{z}  \\  \\  \frac{(dx + dz)}{dz}  = e {}^{z}  \\  \\ d(x + z) = e {}^{z} dz \\  \\ Now \: take \: integral \: on \: both \: sides \:   \\  \\ x + z = e {}^{z}  + k \:  \:  \:  \: ( \: k \: is \: constant) \\  \\ Now \:  \:  \: use \: of \: z \: (z =  \tan {}^{ - 1} ( y ) ) \: in \:above \: equation \:  \\  \\ x +  \tan {}^{ - 1} (y)  = e {}^{ \tan {}^{ - 1} (y) }  + k \\  \\ Therefore \: the \: general \: solution \: of \: given \: differential \: equation \: is \:   \\ x +  \tan {}^{ - 1} (y)  = e {}^{ \tan {}^{ - 1} (y) }  + k \:  \\ (where \: k \: is \: constant)

Similar questions