Math, asked by kajjal0608, 1 year ago

find the general solution of the following equation cos 3 X + cos x minus cos 2x is equal to zero​

Answers

Answered by IamIronMan0
0

Answer:

x = (2n + 1) \frac{\pi}{4}  \:  \: or \:  \: (6n \pm1) \frac{\pi}{3}  \:  \: where \: n \in \: z

Explanation

 \cos(3x)  +  \cos(x)   -  \cos(2x) = 0 \\ 2 \cos( \frac{3x + x}{2} )     \cos( \frac{3x  - x}{2} )  -  \cos(2x) = 0\\ \\ 2 \cos(2x)  \cos(x)   -   \cos(2x)  = 0 \\ \\ \cos(2x) (2 \cos(x)  - 1) = 0 \\\\  \cos(2x)  = 0  \:  \: \:  \: or  \:  \:  \:  \:  \cos(x)  =  \frac{1}{2} =  \cos( \frac{\pi}{3} )   \\  \\ 2x =  \frac{(2n + 1)\pi}{2}  \:  \: or \:  \: x = 2n\pi \pm \frac{\pi}{3}

Similar questions