Math, asked by chandavedic, 2 days ago

Find the general solution : tanx = sinx​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm \: tanx = sinx \\

can be rewritten as

\rm \:  \dfrac{sinx}{cosx}  = sinx \\

\rm \: sinx = sinx \: cosx \\

\rm \: sinx - sinx \: cosx = 0 \\

\rm \: sinx(1 \:  -  \: cosx) = 0 \\

\rm\implies \:sinx = 0 \: \rm\implies \:\boxed{ \rm{ \:x = n\pi  \: \forall \: n \in \: Z  \: }}\\

Or

\rm\implies \:1 - cosx = 0 \\

\rm \: cosx = 1 \\

\rm \: cosx = cos0 \\

\rm\implies \:x = 2m\pi  \:  \pm \: 0 \:  \: \forall \: m \in \: Z \\

\rm\implies \:\boxed{ \rm{ \:x = 2m\pi  \: \: \forall \: m \in \: Z \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Answered by bhattrohit666
1

Step-by-step explanation:

sinx=tanx

sinx= sinx /cosx

cosx=1

x=cos−1 (1)

x=0°

So, x=2nπ+0°

∴ x=2nπ

General solution of sinx=tanx is cosx

Concept: Trigonometric Functions - General Solution of Trigonometric Equation of the Type

Hope you like ..

Rate as a brainliest.

Also give ratings ..

Similar questions