Find the general solutions of the equation ( 1 - tan theta ) ( 1 + sin 2 theta ) = 1 + tan theta pls answer this and pls dont link to any other question
Answers
Answered by
4
(1 - tan x) (1 + sin 2x) = 1 + tan x
1+ sin 2x = 1 + (2 tan x)(1+ tan² x) = (1+ tan x)²/(1 + tan² x)
so either 1 + tan x = 0
=> tan x = -1 => x = -π/4 + n π, n= integer.
or, (1 - tan x)(1+ tan x) = 1 + tan² x
=> tan² x = 0 => x = n π, n = integer.
1+ sin 2x = 1 + (2 tan x)(1+ tan² x) = (1+ tan x)²/(1 + tan² x)
so either 1 + tan x = 0
=> tan x = -1 => x = -π/4 + n π, n= integer.
or, (1 - tan x)(1+ tan x) = 1 + tan² x
=> tan² x = 0 => x = n π, n = integer.
Answered by
1
Answer:
Step-by-step explanation:
(1 - tan x) (1 + sin 2x) = 1 + tan x
1+ sin 2x = 1 + (2 tan x)(1+ tan² x) = (1+ tan x)²/(1 + tan² x)
so either 1 + tan x = 0
=> tan x = -1 => x = -π/4 + n π, n= integer.
or, (1 - tan x)(1+ tan x) = 1 + tan² x
=> tan² x = 0 => x = n π, n = integer.
Similar questions
Math,
8 months ago
Computer Science,
8 months ago
Math,
8 months ago
English,
1 year ago
Physics,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago