Math, asked by OfficialPk, 3 months ago

Find the general term (r+1) term in the expansion of   (4+5x)^{-3/2}

Answers

Answered by ApprenticeIAS
2

 \underline{ \underline{ \sf \red{Question}}} \red{: }

 \sf{(r+1)^{th}  \: term \:  of  \: (4+5x)^{\frac{-3}{2}}}

 \underline{ \underline{ \sf \red{Answer}}} \red{: }

 \sf{(4+5x)^{\frac{-3}{2}}} \implies \: 4 \: . \:  \bigg(1 +  \dfrac{5x}{4}  \bigg)^{ \frac{ - 3}{2} }

\sf{(r+1)^{th}  \: term \:  of  \: \:  \bigg(1 +  \dfrac{5x}{4}  \bigg)^{ \frac{ - 3}{2} } }

 \sf{General mTerm \:  for (1+x)^m  \implies  \boxed{ \boxed{ \sf{T_{r + 1} = \dfrac{m(m-1)(m-2) .... [m - (r-1)]}{r!} \times x^r}}}}

 \sf m =  \dfrac{ - 3}{2} , \: x =  \dfrac{5x}{4}

 \sf{T_{r + 1} =   \dfrac{ \dfrac{   - 3}{2}  \bigg( \dfrac{  -  3}{2} -1 \bigg) \bigg( \dfrac{  - 3}{2} -2 \bigg) ....  \bigg[ \dfrac{   - 3}{2}    -  r  +  1 \bigg]}{r!}}  \times  {  \bigg(\dfrac{ 5x}{4} \bigg) }^{r}

 \sf{T_{r + 1} =   \dfrac{ \dfrac{   - 3}{2}  \bigg( \dfrac{  -  5}{2} \bigg) \bigg( \dfrac{  - 7}{2} \bigg) ....  \bigg[ \dfrac{   -  1 - 2r}{2}     \bigg]}{r!}}  \times  {  \bigg(\dfrac{ 5x}{4} \bigg) }^{r}

 \sf{T_{r + 1} = {( - 1)}^{r}    \times  \dfrac{ \dfrac{    3}{2}  \bigg( \dfrac{   5}{2} \bigg) \bigg( \dfrac{  7}{2} \bigg) ....  \bigg[ \dfrac{    1  + 2r}{2}     \bigg]}{r!}}  \times  {  \bigg(\dfrac{ 5x}{4} \bigg) }^{r}

 \sf{ T_{r+1} = {( - 1)}^{r}   \times \dfrac{3.5.7....(1 + 2r)}{ {2}^{r} \: . \: r !} \times  \bigg(  \dfrac{5x}{4} \bigg)^{r}  }

 \sf{ T_{r+1} = {( - 1)}^{r}   \times \dfrac{3.5.7....(1 + 2r)}{  \: \: r !} \times  \bigg(  \dfrac{5x}{8} \bigg)^{r}  \times  {4}^{ \frac{ - 3}{2} }  }

\sf{(r+1)^{th}  \: term \:  of  \: \:  {4}^{  \frac{ - 3}{2} }  \: . \:  \bigg(1 +  \dfrac{5x}{4}  \bigg)^{ \frac{ - 3}{2} } } =

 \sf{ T_{r+1} = {( - 1)}^{r}   \times \dfrac{3.5.7....(1 + 2r)}{  \: \: r !} \times  \bigg(  \dfrac{5x}{8} \bigg)^{r}  \times  {4}^{ \frac{ - 3}{2} }  }

 \sf{ T_{r+1} = {( - 1)}^{r}   \times \dfrac{3.5.7....(1 + 2r)}{  \: \: r !} \times  \bigg(  \dfrac{5x}{8} \bigg)^{r}  \times  {( {2}^{2})  }^{ \frac{ - 3}{2} }  }

 \sf{ T_{r+1} = {( - 1)}^{r}   \times \dfrac{3.5.7....(1 + 2r)}{  \: \: r !} \times  \bigg(  \dfrac{5x}{8} \bigg)^{r}  \times   \dfrac{1}{8}  }

 \boxed{ \boxed{ \sf{ T_{r+1} = {( - 1)}^{r}   \times \dfrac{3.5.7....(1 + 2r)}{  \: \: r !} \times   \dfrac{(5x)^{r} }{8^{r + 1} } }}}

Similar questions