Math, asked by shobhanshubaibil, 10 months ago

Find the generating function from the recurrence relation given by

S(K) – 6 S( K – 1) + 5 S(K – 2) = 0, where S(0) = 1, S(1) = 2.​

Answers

Answered by Anonymous
0

Given recurrence relation :  S(K) – 6 S( K – 1) + 5 S(K – 2) = 0

where S(0) = 1, S(1) = 2

S(K)  -6 S( K -1) + 5 S(K-2) =0

The auxillary equation is  a^{2} -6a + 5 = 0

Factorizing the above eqn we get,

(a-5)(a -1)=0

Hence  a=5,1

s^{H}(k) = A_{1}5^{k}  + A_{2}1^{k}              -----------------eq (1)

When s(0)=1        s(0) = A_{1} +A_{2}                           [ Since s(0)=1]  Given

A_{1} +A_{2}=1                          ---------------- eq (2)

When s(1)=2         s(1) =5A_{1} +A_{2}                         [ Since s(1)=2 ]   Given

5A_{1} +A_{2}=2                       ----------------- eq(3)

From (2) and (3) we get

A1 = 0.25\\A2 = 0.75

Using the above given eqn and subst.  

s^{H}(k) = (0.25)5^{k} + (0.75)1^{k} \\\\s^H(k)=\frac{1}{4}  (5^{k}  + 3)

Hence the generating function is  s^H(k)=\frac{1}{4}  (5^{k}  + 3)

Similar questions