Find the given sum:
1.2.3 + 2.3.4 +3.4.5 + ... + n(n+1)(n+2)
Answers
Answered by
0
4.5.6 +5.6.7+6.7.8+7.8.9+
Answered by
6
Answer:
n(n+1)(n+2)(n+3)/4
Step-by-step explanation:
1.2.3 + 2.3.4 +3.4.5 + ... + n(n+1)(n+2)
= ∑ n(n+1)(n+2)
= ∑ n(n² + 3n + 2)
= ∑ n³ + 3n² + 2n
= n²(n+1)²/4 + 3(n)(n+1)(2n+1)/6 + 2n(n+1)/2
= n²(n+1)²/4 + (n)(n+1)(2n+1)/2 + n(n+1)
= (n(n+1)/2 )( n(n+1)/2 + (2n+1) + 2)
= (n(n+1)/4 )( n(n+1) + 2(2n+1) + 4)
= (n(n+1)/4 )( n² + n + 4n+2 + 4)
= (n(n+1)/4 )( n² + 5n + 6)
= n(n+1)( n² + 5n + 8)/4
= n(n+1)(n+2)(n+3)/4
1.2.3 + 2.3.4 +3.4.5 + ... + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4
Similar questions
Computer Science,
7 months ago
Math,
1 year ago
India Languages,
1 year ago
English,
1 year ago
Math,
1 year ago