Math, asked by zainab6105, 2 months ago

Find the gradient of a line and also find the gradient of the perpendicular line on the following line.
y= 3x – 5

Answers

Answered by amansharma264
34

EXPLANATION.

Equation of the line.

⇒ y = 3x - 5.

As we know that,

⇒ Gradient of line = slope of the line.

⇒ The line is in the form of : y = mx + c.

⇒ Gradient of line = 3.

⇒ Gradient of perpendicular line = b/a.

We can write equation as,

⇒ 3x - y - 5 = 0.

⇒ Gradient = b/a = -1/3.

                                                                                                                       

MORE INFORMATION.

Equation of tangent.

Equation of tangent to the curve y = f(x) at P(x₁, y₁) is,

(y - y₁) = m(x - x₁).

(1) = The tangent at (x₁, y₁) is parallel to x-axes = (dy/dx) = 0.

(2) = The tangent at (x₁, y₁) is parallel to y-axes = (dy/dx) = ∞.

(3) = The tangent lines makes equal angles with the axes = (dy/dx) = ± 1.


ItzArchimedes: Awesome !
amansharma264: Thanku
Answered by BrainlyRish
61

Given : Equation of a line : y = 3x - 5 .

Exigency To Find : The Gradient of a line & the gradient of the perpendicular line .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀ Finding Gradient of a line :

⠀⠀⠀❒ Gradient of a line is also known as slope of line .

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \qquad  \maltese  \: \bf Equation \: of \: a \: line \: in \: slope \:-intercept \: form\::\\

\qquad \dag\:\:\bigg\lgroup \sf{  Eq_n \:: y = mx + c }\bigg\rgroup \\\\

⠀⠀⠀Here m is the slope [ Gradient ] of a line & c is the y- intercept .

Given Equation :

  • Equation : y = 3x - 5 .

⠀⠀⠀Now , By Comparing both Equation we get ,

\qquad :\implies \frak{\underline{\purple{\:m = 3 }} }\:\: \bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Gradient\: [ \ Slope \ ] \:of\:line \:is\:\bf{3}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀ Finding Gradient of a Perpendicular line :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \qquad  \maltese  \: \bf Gradient \: of \: a \:Perpendicular \: line \:\::\\

\qquad \dag\:\:\bigg\lgroup \sf{  Gradient \:_{(Perpendicular \:Line\:)}\:: \dfrac{b}{a} }\bigg\rgroup \\\\

Given Equation :

\qquad :\implies \sf Eq_n \: = \: y = 3x - 5 \\

\qquad :\implies \sf Eq_n \: = \:3x - y - 5  = 0 \\

⠀⠀⠀⠀⠀Here ,

  • b = -1
  • a = 3

\qquad :\implies \sf \dfrac {b}{a}\: =  \dfrac {-1}{3}\: \:  \\

\qquad :\implies \bf Gradient \: : \: \dfrac {b}{a}\: =  \dfrac {-1}{3}\: \:  \\

\qquad :\implies \frak{\underline{\purple{\:Gradient_{( Perpendicular \:Line\:)} \: : \: \dfrac {b}{a}\: =  \dfrac {-1}{3}\: }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Gradient \:of\:Perpendicular \:line\:is\:\bf{  \dfrac {-1}{3}\:  }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀


ItzArchimedes: Awesome !!
Similar questions