Physics, asked by vijayakshara, 10 months ago

find the gravitational force of attraction between the moon and the earth if the man of moon is 1/81 times the mass of earth . ( given : G = 6.67*10^-11 Nm^2 kg ^-2 , radius of the moon's orbit = 3.58*10^8 m , and the mass of the earth is 6.10^24 kg anwer fast i will surely mark u as a brainliest

Answers

Answered by rocky200216
41

\huge\bold{\underbrace{\red{SOLUTION:-}}}

GIVEN :-

✍️ The mass of the moon is 1/81 times the mass of the earth .

  • Gravitational Constant [G] = \rm{6.67\times{10^{-11}}\:N.m^2.kg^{-2}}

  • radius of moon's orbit [d] = \rm{3.58\times{10^8}\:m}

  • mass of earth (m) = \rm{6\times{10^{24}}\:kg}

TO FIND :-

  • The gravitational force of attraction between the moon and the earth .

CALCULATION :-

Let,

✍️ The mass of the earth be “m” .

According to the question,

  • \rm\bold{mass\:of\:moon\:=\:\dfrac{1}{81}\:\times{mass\:of\:earth}\:}

  • \rm\blue{\implies\:mass\:of\:moon\:=\:\dfrac{m}{81}\:}

✍️ Using Newton's law of Gravitation;

\orange\bigstar\:\rm{\purple{\boxed{\red{Force\:=\:G\:\dfrac{m_1\:m_2}{d^2}\:}}}}

Here,

  • \rm{m_1\:=\:mass\:of\:earth\:=\:m\:}

  • \rm{m_2\:=\:mass\:of\:moon\:=\:\dfrac{m}{81}\:}

  • d = radius of moon's orbit .

\rm{\implies\:F\:=\:G\:\times{\dfrac{m\:\times{\dfrac{m}{81}}}{d^2}}\:}

\rm{\implies\:F\:=\:6.67\times{10^{-11}}\:\times\:\dfrac{6\times{10^{24}}\times{\dfrac{6\times{10^{24}}}{81}}}{(3.58\times{10^8})^2}\:}

\rm{\implies\:F\:=\:\dfrac{240.12\times{10^{37}}}{1038.1284\times{10^{16}}}\:}

\rm{\pink{\implies\:F\:=\:2.313\times{10^{20}}\:N\:}}

\green\therefore The gravitational force of attraction between moon and earth is “\underline\bold\red{2.313\times{10^{20}}\:N\:}” .

Similar questions