Find the greatest and least value of (sin-1x)3+(cos-1x)3?
Answers
Answered by
24
INVERSE TRIGONOMETRIC FUNCTIONS & APPLICATION OF DERIVATIVES :D
Final Answer : Min. Value :
Max . Value :
STEPS:
1) Let
[tex]f(x) = (sin^{-1}x )^{3} \:\: + (cos^{-1}x)^{3} \\ \\ f'(x) = 3 (sin^{-1}x)^{2} * \frac{1}{ \sqrt{1-x^{2}} } + 3 (cos^{-1}x)^{2} * (- \frac{1}{ \sqrt{1-x^{2}} }) \\ \\ f'(x) = \frac{3}{ \sqrt{1-x^{2}} } ((sin^{-1}x)^{2}- (cos^{-1}x)^{2} ) \\ \\ [/tex]
Now ,Find below points as your own or take it as your Homework which is trivial
Critical Points / Boundary Points :
2) Since we know ,
arcsin(1) = pi/2 , arcsin(1/root(2)) = pi/4
arccos(-1) =pi , arccos(1/root(2)) = pi/4
Substitute these values in f(x) , to get
f(-1) =
f(1) =
f(1/root(2)) =
3) Hence , looking above values :
Max f(x) =
Min f(x) =
Domain :
Hope its Clear :p
Final Answer : Min. Value :
Max . Value :
STEPS:
1) Let
[tex]f(x) = (sin^{-1}x )^{3} \:\: + (cos^{-1}x)^{3} \\ \\ f'(x) = 3 (sin^{-1}x)^{2} * \frac{1}{ \sqrt{1-x^{2}} } + 3 (cos^{-1}x)^{2} * (- \frac{1}{ \sqrt{1-x^{2}} }) \\ \\ f'(x) = \frac{3}{ \sqrt{1-x^{2}} } ((sin^{-1}x)^{2}- (cos^{-1}x)^{2} ) \\ \\ [/tex]
Now ,Find below points as your own or take it as your Homework which is trivial
Critical Points / Boundary Points :
2) Since we know ,
arcsin(1) = pi/2 , arcsin(1/root(2)) = pi/4
arccos(-1) =pi , arccos(1/root(2)) = pi/4
Substitute these values in f(x) , to get
f(-1) =
f(1) =
f(1/root(2)) =
3) Hence , looking above values :
Max f(x) =
Min f(x) =
Domain :
Hope its Clear :p
Xania:
Asked few questions from Capacitors , mind trying them
Similar questions