Math, asked by shruthi2431, 1 year ago

Find the greatest and least value of (sin-1x)3+(cos​-1x)3?

Answers

Answered by JinKazama1
24
INVERSE TRIGONOMETRIC FUNCTIONS & APPLICATION OF DERIVATIVES  :D 

Final Answer : 
Min. Value :   \frac{\pi^{3}}{32}   
                         Max . Value : 
\frac{7\pi^{3}}{8} 

STEPS: 
1)   Let 
[tex]f(x) = (sin^{-1}x )^{3} \:\: + (cos^{-1}x)^{3} \\ \\ f'(x) = 3 (sin^{-1}x)^{2} * \frac{1}{ \sqrt{1-x^{2}} } + 3 (cos^{-1}x)^{2} * (- \frac{1}{ \sqrt{1-x^{2}} }) \\ \\ f'(x) = \frac{3}{ \sqrt{1-x^{2}} } ((sin^{-1}x)^{2}- (cos^{-1}x)^{2} ) \\ \\ [/tex]
 

Now ,Find below points as your own or take it as your Homework  which is trivial 
Critical Points / Boundary Points : x= 1,-1, \frac{1}{ \sqrt{2} }
 
 2)  Since we know ,
arcsin(1) = pi/2 , arcsin(1/root(2)) = pi/4 
arccos(-1) =pi   , 
 arccos(1/root(2)) = pi/4 

Substitute these values in  f(x) , to get   
 f(-1) =   
 \frac{7\pi^{3}}{8}  
    f(1)  =    \frac{\pi^{3}}{8}
   f(1/root(2))  =  \frac{ \pi^{3} }{32}  

3) Hence , looking above values :

Max f(x)  =  \frac{7\pi^{3}}{8} 
Min f(x)    =   \frac{ \pi^{3} }{32}  

Domain  :  -1 \leq x \leq 1  

Hope its  Clear :p 

Xania: Asked few questions from Capacitors , mind trying them
Xania: o_O
JinKazama1: I will see either today Night or Tomorrow.
Xania: Surely
Similar questions