Math, asked by suhanijana6, 3 months ago

find the greatest no of 5 digits which on dividing by 10,12,16,20 and 24 leaves in each case 3 as remainder​

Answers

Answered by 12thpáìn
15

first we need to find the LCM 10,12,16,20,24

LCM of 10,12,16,20,24

2 \underline{ |10.12.16.20.24}  \\ 2  \underline{| \: 5.  \: \: 6.  \: \: 8. \: 10. \:  12 } \\ 2 \underline{  | \:  5.  \: \: 3.  \: \: 4. \: \:  \:  5. \: 6 \: }   \\5 |   \underline{5 \:  \: .3. \: \:  2. \ \: 5.  \: \: 3} \\    \:   1. \: \:  3. \:  \: 2. \:  \: 1 \:  \: 3 \\  \\  \sf \: lcm = 2 \times 2 \times 2 \times 5 \times 3 \times 2 \times 3 = 720

  • We have the greatest five digit number : 99999

 \sf \: Now \: . \:  \dfrac{  99999}{720}= 130 \:  remainder \: will \: be \: \pink{ 639}

  • → The required number = ( 99999-639 ) + 6 = 99366
Answered by badolamamta68
0

Step-by-step explanation:

hope this helps you

mark me as a brainliest

Attachments:
Similar questions