Math, asked by nassiix68, 9 months ago


Find the greatest number of 5-digits which on being divided by 9, 12, 24 and 45 leaves 3, 6, 18
and 39 as remainders respectively.

Answers

Answered by SarcasticL0ve
6

\star \; {\underline{\underline{\frak \pink{To\;find:-}}}}

  • the greatest number of 5-digits which on being divided by 9, 12, 24 and 45 leaves 3, 6, 18 and 39 as remainders respectively.

\star \; {\underline{\underline{\frak \pink{Solution:-}}}}

☯ The difference between the divisor and the remainder is\;same in all the cases which is 6.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normalsize {\underline{\underline{\sf{\blue{\dag \; Step<strong> </strong>\; (1)}}}}}

 \sf{LCM\;of\;divisors:-}

 LCM of (9,12,24,45) is 360.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normalsize {\underline{\underline{\sf{\blue{\dag \; Step \; (1)}}}}}

 \sf{We\;know\;the\;largest\;five\;digit\;number\;is\;99999.}

: \implies Now to find the largest five digit number which satisfy the given condition then do the following:-

\star \; {\underline{\sf{\green{A) 360 × N - 6}}}}

: \implies N ,is the quotient of  \dfrac{99999}{360}

: \implies We shall get the answer as 360 × 277 - 6 = 97214

\star \; {\underline{\sf{\green{ (B)\;Divide\; \dfrac{99999}{360}}}}}

: \implies We will get remainder as 279.

: \implies \sf{ \underbrace{Subtracting\;279\;from\;99999\;which\;is\;99720.}_{ \purple{99999 - 279 = 99720}}}

: \implies \sf{ \underbrace{Now,\;Subtracting\;6\;from\;99720\;which\;is\;97214.}_{ \purple{99720 - 6 = 97214}}}

\rule{200}{2}

Similar questions