find the greatest number of 5 digits which when divided by 25, 60 and 40
Answers
Answer:
there is a answer of your question
Step-by-step explanation:
(a) 5m=60
Putting the given values in L.H.S.,
5 x 10 = 50, 5 x 5 = 25
∵ L.H.S. ≠ R.H.S. ∵ L.H.S.≠ R.H.S.
∴m=10 is not the solution. ∴m=5 is not the solution.
5 x 12 = 60, 5 x 15 = 75
∵ L.H.S. = R.H.S. ∵ L.H.S. ≠ R.H.S.
∴m=12 is a solution. ∴m=15 is not the solution.
(b) n+12=20
Putting the given values in L.H.S.,
12 + 12 = 24, 8 + 12 = 20
∵ L.H.S. ≠ R.H.S. ∵ L.H.S. = R.H.S.
∴n=12 is not the solution. ∴n=8 is a solution.
20 + 12 = 32, 0 + 12 = 12
∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.
∴n=20 is not the solution. ∴n=0 is not the solution.
(c) p–5=5
Putting the given values in L.H.S.,
0 – 5 = –5, 10 – 5 = 5
∵ L.H.S. ≠ R.H.S. ∵ L.H.S. = R.H.S.
∴p=0 is not the solution. ∴p=10 is a solution.
5 – 5 = 0, –5 – 5 = –10
∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.
∴p=5 is not the solution. ∴p=–5 is not the solution.