Find the greatest number that divides 1085 and 1514, leaving remainders of 5 and 2, respectively
Answers
Answer:
Find the greatest number that divides 1085 and 1514, leaving remainders of 5 and 2, respectively
Find that number
Subtract 5 , 2 from 1085 and 1514 resp.
1085 - 5 = 1080
1514 - 2 = 1512
Find hcf of both
1080 = 2 × 2 × 2 × 3 × 3 × 3 × 5
1512 = 2 × 2 × 2 × 3 × 3 × 3 × 7
Hcf = 2 × 2 × 2 × 3 × 3 × 3
= 216
Hcf of 1080 and 1512 = 216
Therefore, 216 is the greatest number that when divides 1085 leaves remainder 5 and when divides 1514 leaves remainder 2.
Subtract 5 , 2 from 1085 and 1514 resp.
1085 - 5 = 1080
1514 - 2 = 1512
Find hcf of both
1080 = 2 × 2 × 2 × 3 × 3 × 3 × 5
1512 = 2 × 2 × 2 × 3 × 3 × 3 × 7
Hcf = 2 × 2 × 2 × 3 × 3 × 3
= 216
Hcf of 1080 and 1512 = 216
Therefore, 216 is the greatest number that when divides 1085 leaves remainder 5 and when divides 1514 leaves remainder 2.