find the greatest number that will divide 43 91 and 183 so as to leave the same remainder in each case
Answers
Answered by
3
Step-by-step explanation:
1535 is correct answer
Answered by
0
The answer is 4 and how it is 4 is below,
We can represent any integer number in the form of: D*q + r.
Where D is divisor, q is quotient, r is remainder.
so each number can be written accordingly:
43 = D*q1 + r1;
91 = D*q2 + r2;
183 = D*q3 + r3;
r1,r2 & r3 will be same in above three equations according to the question.
D is the value that we want to find out. which should be greatest.
On solving three equations we get:
D*(q2-q1)= (91-43)=48
D*(q3-q2)= (183-91)=92
D*(q3-q1)= (183-43)=140
It is obvious that q3>q2>q1
For the greatest value of D that divide each equation we take the HCF of 48,92,140
THEREFORE ANSWER IS 4.
Similar questions
English,
5 months ago
Math,
5 months ago
Physics,
5 months ago
Math,
10 months ago
Social Sciences,
1 year ago
Business Studies,
1 year ago