Math, asked by 12ahujagitansh, 1 month ago

Find the greatest value of
 {x}^{3} {y}^{4}  \: when \: 2x + 3y = 7 \: and \: x \geqslant 0 \: and \: y \geqslant 0

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x,y \:  \geqslant  \: 0

and

\rm :\longmapsto\:2x + 3y = 7

can be rewritten as

\rm :\longmapsto\:3\bigg[\dfrac{2x}{3}\bigg] +  4\bigg[\dfrac{3y}{4}\bigg]

can be further rewritten as

\rm :\longmapsto\:\bigg[\dfrac{2x}{3}\bigg] + \bigg[\dfrac{2x}{3}\bigg] + \bigg[\dfrac{2x}{3}\bigg] +  \bigg[\dfrac{3y}{4}\bigg] + \bigg[\dfrac{3y}{4}\bigg] + \bigg[\dfrac{3y}{4}\bigg] + \bigg[\dfrac{3y}{4}\bigg] = 7

So, greatest value of

\rm :\longmapsto\:\bigg[\dfrac{2x}{3}\bigg]\bigg[\dfrac{2x}{3}\bigg]\bigg[\dfrac{2x}{3}\bigg]\bigg[\dfrac{3y}{4}\bigg]\bigg[\dfrac{3y}{4}\bigg]\bigg[\dfrac{3y}{4}\bigg]\bigg[\dfrac{3y}{4}\bigg]= {\bigg[\dfrac{7}{7} \bigg]}^{7}

\rm :\longmapsto\:\dfrac{ {2}^{3}  \: {3}^{4} }{ {3}^{3}  \: {4}^{4} } {x}^{3} {y}^{4} = 1

\rm :\longmapsto\:\dfrac{3}{32 } {x}^{3} {y}^{4} = 1

\bf\implies \: {x}^{3} {y}^{4} = \dfrac{32}{3}

\bf\implies \: Greatest \: value \: of \: {x}^{3} {y}^{4} = \dfrac{32}{3}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used

Maxima and Minima

\rm :\longmapsto\:a_1,a_2, -  - ,a_n \: are \: n \: positive \: integers \: such \: that \:

\rm :\longmapsto\:a_1 + a_2 +  -  -  -  + a_n = k \: (constant) \: then

\rm :\longmapsto\:a_1a_2 -  -  - a_n  \: is \: greatest \: when \: a_1 = a_2 =  -  -  =  a_n

\rm :\longmapsto\:greatest \: valu e \: of \: a_1a_2 -  -  - a_n   =  {\bigg[\dfrac{k}{n} \bigg]}^{n}

Similar questions