Math, asked by deprc2147, 1 year ago

Find the harmonic mean of two numbers whose geometric mean and arithmetic mean is 5 and 8

Answers

Answered by meenug1974pb4csn
8
Solution of this sum is as follows
Attachments:
Answered by sanjeevk28012
5

Given :

For any two numbers ,

Geometric mean = G.M = 5

Arithmetic mean = A.M = 8

To Find :

The Harmonic mean of two numbers

Solution :

Let The two numbers = a , b

Since, Arithmetic mean =  \dfrac{a+b}{2}  

i.e        A . M = \dfrac{a+b}{2}                               .............`1

The Geometric mean = \sqrt{ab}

i.e         G . M = \sqrt{ab}                                ..............2

The Harmonic mean = \dfrac{2ab}{a+b}

i.e        H . M =  \dfrac{2ab}{a+b}                             .................3

Now,

The product of Arithmetic mean and Harmonic mean = A .M × H.M

i.e  A .M × H.M  =  (\dfrac{a+b}{2} )  ( \dfrac{2ab}{a+b} )

Or,   A .M × H.M  = ab

∵     G . M = \sqrt{ab}

So,   ab = ( G . M)²

Or,     A .M × H.M  =  ( G . M)²

A/Q  ,  G.M = 5     and  A.M = 8

So,     8 × H . M = 5 ²

Or,      8 × H . M = 25

∴           H . M = \dfrac{25}{8}    = 3.125

Hence, The Harmonic mean of the two numbers is 3.125   Answer

Similar questions