Math, asked by abhaymishraa8995, 8 months ago

Find the HCF 504 and5292 with the help of dividend method

Answers

Answered by Anonymous
20

\large{\underline{\sf{Solution:-}}}

\boxed{\sf{HCF = 252}}

\large{\underline{\sf{Explanation:-}}}

Now, taking 504:-

\begin{tabular}{l|r}2&504\\\cline{1-2}2&252\\\cline{1-2}2&126\\\cline{1-2}3&63\\\cline{1-2}3&21\\\cline{1-2}7&7\\\cline{1-2}&1\end{tabular} \\

Now, taking 5292:-

\begin{tabular}{l|r}2&5292\\\cline{1-2}2&2646\\\cline{1-2}3&1323\\\cline{1-2}3&441\\\cline{1-2}3&147\\\cline{1-2}7&49\\\cline{1-2}7&7\\\cline{1-2}&1\end{tabular} \\

To find the HCF, multiply all the prime factors common to both numbers:-

→ 504 = 2 × 2 × 2 × 3 × 3 × 7

→ 5292 = 2 × 2 × 3 × 3 × 3 × 7 × 7

→ HCF = 2 × 2 × 3 × 3 × 7

\boxed{\sf{HCF = 252}}

Therefore, HCF of 504 and 5292 is 252.

_____________________________________

Answered by NeverForget
99
\huge\mathtt\red{Answer}

ʜᴄꜰ ᴏꜰ 504 :-

\begin{array}{r | 1} 2 & 504\\ \cline{2-2} 2 & 252\\ \cline{2-2} 2 & 126\\ \cline{2-2} 3 & 63\\ \cline{2-2} 3 & 21\\ \cline{2-2} 7 & 7\\ \cline{2-2} & 1\end{array}

ꜱᴏ,
504 = 2×2×2×3×3×7

ʜᴄꜰ ᴏꜰ 5292 :-

\begin{array}{r | 1} 2 & 5292\\ \cline{2-2} 2 & 2646\\ \cline{2-2} 3 & 1323\\ \cline{2-2} 3 & 441\\ \cline{2-2} 3 & 147\\ \cline{2-2} 7 & 49\\ \cline{2-2} 7 & 7\\ \cline{2-2} & 1\end{array}

ꜱᴏ,
5292 :- 2×2×3×3×3×7×7

ᴛᴏ ꜰɪɴᴅ ᴛʜᴇ ʜᴄꜰ, ᴡᴇ ʜᴀᴠᴇ,

2×2×3×3×7
= \fbox{252}

ʜᴇɴᴄᴇ ᴛʜᴇ ʜᴄꜰ ᴏꜰ 504 ᴀɴᴅ 5292 ɪꜱ 252.
Similar questions