Math, asked by us6376029, 11 months ago

find the HCF &LCM of 24,36,76

Answers

Answered by nisha8254
1

Answer:

factors

24 = 2×2×2×3

36 = 3×3×3×2

76 = 2×2×19

so ,

LCM = highest power = 2×2×2×3×3×3×19 = 4104

HCF = lowest power = 2

Answered by CharmingPrince
100

\huge{ \underline{ \mathfrak{ \green{ \: Answer}}}}

In order to find HCF and LCM , we will first make their factors

<b><b><b><hr size ="3"></b></b></b>

{ \mathbb{ \underline{ \blue{Factors \:of \:24}}}}

</p><p>\begin{array}{r | l}</p><p></p><p>2 &amp; 24 \\</p><p></p><p>\cline{2-2} 2 &amp; 12 \\</p><p></p><p>\cline{2-2} 2 &amp; 6 \\</p><p></p><p>\cline{2-2} 3 &amp; 3 \\</p><p></p><p>\cline{2-2}  &amp; 1 </p><p></p><p>\end{array}</p><p>

&lt;b&gt;&lt;b&gt;&lt;b&gt;&lt;hr size ="3"&gt;&lt;/b&gt;&lt;/b&gt;&lt;/b&gt;

{ \mathbb{ \underline{ \blue{Factors \:of \:36}}}}

</p><p>\begin{array}{r | l}</p><p></p><p>2 &amp; 36\\</p><p></p><p>\cline{2-2} 2 &amp;  18\\</p><p></p><p>\cline{2-2} 3 &amp; 9\\</p><p></p><p>\cline{2-2} 3 &amp; 3 \\</p><p></p><p>\cline{2-2}  &amp; 1</p><p></p><p>\end{array}</p><p>

&lt;b&gt;&lt;b&gt;&lt;b&gt;&lt;hr size ="3"&gt;&lt;/b&gt;&lt;/b&gt;&lt;/b&gt;

{ \mathbb{ \underline{ \blue{Factors \:of \:76}}}}

</p><p>\begin{array}{r | l}</p><p></p><p>2 &amp; 76 \\</p><p></p><p>\cline{2-2} 2 &amp; 38\\</p><p></p><p>\cline{2-2} 19 &amp; 19\\</p><p></p><p>\cline{2-2} &amp; 1 </p><p></p><p>\end{array}</p><p>

&lt;b&gt;&lt;b&gt;&lt;b&gt;&lt;hr size ="3"&gt;&lt;/b&gt;&lt;/b&gt;&lt;/b&gt;

Now,

12 = 2³ × 3

36 = 2² × 3²

76 = 2² × 19

LCM (12 , 36 , 76) = 2³ × 3² × 19 = 1368

HCF (12 , 36 , 76) = 2² = 4

Similar questions