Math, asked by enagantisharan, 2 months ago

find the hcf and lcm of following numbers by prime factorisation method 1. 48 , 92 ,140 ​

Answers

Answered by XBarryX
3

Step-by-step explanation:

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Given :-

For a Quadratic Polynomial

   

Sum of Zeros = 1

Product of Zeros = -30

___________________________

▪To Find :-

The Quadratic Polynomial.

___________________________

▪Key Point :-

If sum and product of zeros of any quadratic polynomial are s and p respectively,

Then,

The quadratic polynomial is given by :-

\bf  {x}^{2}  - s \: x + p x2 −sx+p

___________________________

▪Solution :-

Here,

Sum = s = 1

and

Product = p = -30

So,

Required Polynomial should be

  \bf{x}^{2}  - 1.x +  (-30) x2 −1.x+ (−30)

i.e.

\bf  {x}^{2} -x -30 x2 −x−30

___________________________

▪Verification :-

\begin{gathered} \sf {x}^{2} - x - 30 \\ \\ \sf {x}^{2} - 6x + 5x - 30 \\ \\ \sf x(x - 6) + 5(x - 6) \\ \\ \sf (x - 6)(x + 5)\end{gathered}x2−x−30x2−6x+5x−30x(x−6)+5(x−6)(x−6)(x+5)

So,

Zeros are 6 and -5

Sum = 6 + (-5) = 1 {VERIFIED}

Product = 6 × (-5) = -30 {VERIFIED}

___________________________

So, Required Polynomial is

\red{ \Large\bf  {x}^{2} -x -30} x2 −x−30

\begin{gathered} \Large \color{Purple}\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required }\\ \huge \color{navy} \mathfrak{ \text{ A}nswer.}\end{gathered} Which  is  the  required Answer.

Answered by KRITISAIGLE
2

Answer:

Answer:

सही प्रश्न :-

777 रुपये को A, B तथा C में इस प्रकार बाॅंटिए कि A को B से आधा मिले तथा B को C से आधा मिले। तब A का हिस्सा होगा।

(1) ₹ 112

(2) ₹ 111

(3) ₹ 115

(4) ₹ 118

दिया हुआ :-

777 रुपए को A, B तथा C में इस प्रकार बाॅंटिए कि A को B से आधा मिले तथा B को C से आधा मिले।

ढूँढ़ने के लिए :-

तब A का हिस्सा होगा।

समाधान :-

माना :

\mapsto↦ C को 4y रुपये मिले।

❒ B को C से आधा मिले।

\mapsto↦ B को 2y रुपये मिले।

❒ A को B से आधा मिले।

\mapsto↦ A को y रुपए मिले।

प्रश्न के अनुसार,

\implies \sf \bold{\purple{A + B + C =\: 777}}⟹A+B+C=777

\implies \sf y + 2y + 4y =\: 777⟹y+2y+4y=777

\implies \sf 3y + 4y =\: 777⟹3y+4y=777

\implies \sf 7y =\: 777⟹7y=777

\implies \sf y =\: \dfrac{\cancel{777}}{\cancel{7}}⟹y=7777

\implies \sf y =\: \dfrac{111}{1}⟹y=1111

\begin{gathered}\implies \sf\bold{\red{y =\: 111\: रुपये}}\\\end{gathered}⟹y=111रुपये

\therefore∴ A का हिस्सा 111 रुपये होगा।

सही विकल्प संख्या (2) रुपये 111 है।

don't be

Similar questions