Math, asked by kanuprince92, 8 months ago

Find the HCF and LCM using prime factorisation. A)396,1080 B)96,404 C)144,196

Answers

Answered by SarcasticL0ve
5

HCF and LCM using prime factorisation

A) 396, 1080

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 396 \\ \cline{1-2} 2 & 198 \\ \cline{1-2} 3 & 99 \\ \cline{1-2} 3 & 33 \\ \cline{1-2} 11 & 11 \\ \cline{1-2} & 1 \end{array}

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 1080 \\ \cline{1-2} 2 & 540 \\ \cline{1-2} 2 & 270 \\ \cline{1-2} 3 & 135 \\ \cline{1-2} 3 & 45 \\ \cline{1-2} 3 & 15 \\ \cline{1-2} 5 & 5 \\ \cline{1-2} & 1 \end{array}

  • 396 = \sf {\boxed{\sf{\pink{2}}}} \times {\boxed{\sf{\purple{2}}}} \times  {\boxed{\sf{\red{3}}}} \times  {\boxed{\sf{\green{3}}}} \times 11

  • 1080 = \sf {\boxed{\sf{\pink{2}}}} \times {\boxed{\sf{\purple{2}}}} \times 2 \times  {\boxed{\sf{\red{3}}}} \times  {\boxed{\sf{\green{3}}}} \times 3 \times 5

⠀⠀⠀⠀⠀⠀⠀

Therefore, HCF of 396 and 1080 is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 2 \times 3 \times 3

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4 \times 9

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{36}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 396, 1080 \\ \cline{1-2} 2 & 198, 540 \\ \cline{1-2} 3 & 99, 270 \\ \cline{1-2} 3 & 33, 90 \\ \cline{1-2} 3 & 11, 30 \\ \cline{1-2} 2 & 11, 10 \\ \cline{1-2} 11 & 11, 5 \\ \cline{1-2} 5 & 1, 5 \\ \cline{1-2} 1 & 1 \end{array}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 2 \times 3 \times 3 \times 3 \times 2 \times 11 \times 5

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4 \times 9 \times 33 \times 5

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 36 \times 165

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{5940}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━━━

B) 96, 404

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 96 \\ \cline{1-2} 2 & 48 \\ \cline{1-2} 2 & 24 \\ \cline{1-2} 2 & 12 \\ \cline{1-2} 2 & 6 \\ \cline{1-2} 3 & 3 \\ \cline{1-2} & 1 \end{array}

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 404 \\ \cline{1-2} 2 & 202 \\ \cline{1-2} 101 & 101 \\ \cline{1-2}  & 1 \end{array}

  • 96 = \sf {\boxed{\sf{\pink{2}}}} \times {\boxed{\sf{\purple{2}}}} \times 2 \times 2 \times 2 \times 3

  • 404 = \sf {\boxed{\sf{\pink{2}}}} \times {\boxed{\sf{\purple{2}}}} \times 101

⠀⠀⠀⠀⠀⠀⠀

Therefore, HCF of 96 and 404 is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 2

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{4}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 96, 404 \\ \cline{1-2} 2 & 48, 202 \\ \cline{1-2} 2 & 24, 101 \\ \cline{1-2} 2 & 12, 101 \\ \cline{1-2} 2 & 6, 101 \\ \cline{1-2} 3 & 3, 101 \\ \cline{1-2} 101 & 1, 101 \\ \cline{1-2}  & 1, 1 \end{array}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 101

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4 \times 8 \times 303

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 32 \times 303

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{9696}}}}}\;\bigstar

━━━━━━━━━━━━━━━━━━━━━━

C) 144, 196

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 144 \\ \cline{1-2} 2 & 72 \\ \cline{1-2} 2 & 36 \\ \cline{1-2} 2 & 18 \\ \cline{1-2} 3 & 9\\ \cline{1-2} 3 & 3 \\ \cline{1-2} & 1 \end{array}

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 196 \\ \cline{1-2} 2 & 98 \\ \cline{1-2} 2 & 46 \\ \cline{1-2} 23 & 23 \\ \cline{1-2} & 1 \end{array}

  • 144 = \sf {\boxed{\sf{\pink{2}}}} \times {\boxed{\sf{\purple{2}}}} \times {\boxed{\sf{\red{2}}}} \times 2 \times 3  \times 3

  • 196 = \sf {\boxed{\sf{\pink{2}}}} \times {\boxed{\sf{\purple{2}}}} \times {\boxed{\sf{\red{2}}}} \times 23

⠀⠀⠀⠀⠀⠀⠀

Therefore, HCF of 144 and 196 is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 2 \times 2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4 \times 2

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{8}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\begin{array}{r | l} 2 & 144, 196 \\ \cline{1-2} 2 & 72, 98 \\ \cline{1-2} 2 & 36, 46 \\ \cline{1-2} 2 & 18, 23 \\ \cline{1-2} 3 & 9, 23  \\ \cline{1-2} 23 & 1, 23 \\ \cline{1-2} & 1, 1 \end{array}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \times 2 \times 2 \times 2 \times 3 \times 23

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 4 \times 4 \times 3 \times 23

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 16 \times 3 \times 23

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 48 \times 23

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{1104}}}}}\;\bigstar

Similar questions