Math, asked by parveenkumarpko19591, 8 months ago

find the hcf and lcm using the prime factorization method (1) 15 and 12. (2) 18 and 45.​

Answers

Answered by mysticd
3

 i) Given \: numbers \: 15\:and \: 12

We have 15 = 3¹ × 5¹

12 = 2×2×3 = 2² × 3¹

 HCF( 15,12) = 3

 \blue{( Product \:of \: the \: smallest\:power}

 \blue{ of \:each \: Common \:prime \:factors}

 \blue{ of \:the \: numbers .)}

 LCM ( 15,12) = 3\times 2^{2} \times 5

 = 60

 \pink{ ( Product \:of \: greatest \:power \:of }

 \pink{ each \:prime \:factors \:of \:the \: numbers )}

 ii) Given \: numbers \: 18\:and \: 45

We have 18 = 2 × 3 × 3 = 2 × 3²

45 = 3 × 3 × 5 = 3² × 5¹

 HCF( 18,45) = 3^{2} = 9

 \blue{( Product \:of \: the \: smallest\:power}

 \blue{ of \:each \: Common \:prime \:factors}

 \blue{ of \:the \: numbers .)}

 LCM ( 18,45) = 2 \times 3^{2}\times 5

 = 90

 \pink{ ( Product \:of \: greatest \:power \:of }

 \pink{ each \:prime \:factors \:of \:the \: numbers )}

•••♪

Similar questions